SCIE 630
Landscape Ecology

Helen Poulos

Student Learning Goals

Learning requires you to take an active role in the course. Students in this course are expected to participate in all of the course components including lecture, labs, and lab write ups. Your acquisition of the course material depends on your own personal interpretation of the concepts we cover in class. As an instructor, it is my job to facilitate your learning of forest ecology in an active manner, but ultimately it is up to you to process the information I present to you in this course. During class time we will all be involved in working towards the common goal of learning ecological concepts. Although facts and vocabulary are important to any discipline, I ask you to go beyond simple memorization of details and to interconnect those facts to concepts, applications and problems; to ask meaningful questions; to test well developed hypotheses; to develop a range of intellectual abilities, including critical thinking, logical argument, appropriate uses of evidence and interpretation of varied kinds of information; and communication of your understanding in writing and orally.

Achieving Learning Goals
Active class participation and attendance is a must for your success in this course. You will be expected to participate in cooperative group projects, complete assigned homework and lab assignments, complete reading assignments in advance of class meetings, and critically analyze the themes presented in the course material.
Instructor Goals

As the instructor of this course, my goal is to train you in the fundamental principles of landscape ecology using a combination of lecture, field-based learning, statistical analysis, and writing assignments. Through this course, I will lead you through the process of forming research questions, designing experiments, performing statistical analyses, drawing conclusions, and synthesizing results. Through this experience, I hope to help you develop higher-order thinking and reasoning skills so you can successfully explore and demonstrate your abilities to design and execute scientific research projects.


Landscape Ecology in Theory and Practice, M. Turner, R. Gardner, & R. O'Neill; Springer-Verlag 2001.
Learning Landscape Ecology, S. Gergel & M. Turner, eds.; Springer, 2003.

They will be available at Broad Street Books. We will probably use only 2-3 exercises from the lab book, Learning Landscape Ecology. There are assigned readings for each lecture.  These readings are not optional and must be read prior to lectures.  PDF copies of all readings will be available on the Blackboard.

Lab Exercises

You will be asked to complete 2 lab exercises. These represent a key component of your understanding of the course materials, and they represent a considerable proportion of your grade in this course. Your responses will be due at the beginning of class at the beginning of the lecture one week (Problem Set 1), or two weeks (Problem Set 2) after the problems are handed out. 


There will be midterm and final exams.  The midterm will be a take home exam that will be handed out in class and will be turned in the following week.  The final exam will be held during finals week.  The final will emphasize material from the second half of the course, but the course material builds on itself so all of it will be fair game.  Both exams will require you to provide short answers and definitions, solve problems and compose essays.

Writing Assignments

A manuscript will be the major assignment for the course.  You will complete this assignment by yourself or in collaboration with one other person from the class.  The topic will be of your own choosing, but it must be related to 'landscape ecology' in its broadest sense. You have two options for your paper: perform a meta-analysis, or write a 'standard' literature review.  You will learn about meta-analysis during lecture.   The manuscript will be formatted as a submission to the journal Ecology (  A topic proposal is due at the beginning of class in early October.  It should be in the form of a short statement (< 1 page) explicitly outlining: (1) the category of paper you plan to write (metanalysis or conventional literature review), (2) your topic stated as hypothesis and prediction, and (3) a preliminary list of relevant papers.  You will have read these papers; do not present a list of relevant sounding titles of unread papers.  The paper is due at the beginning of class the week prior to Thanksgiving Break.  Readings related to these assignments are included on Blackboard.  You will receive more details on the paper assignment in class.

Grading and Late Policy

Your final grade will be based on a total of 400 points.  Midterm and final examinations will each count for 100 points.  Problem sets will be worth 20 points each.  The topic proposal will count for 10 points, the manuscript for 150 points.  Late work will be penalized at a rate of 10% of assigned points per day.  Auditors must take and pass both exams.  If you do not want to take the exams you are welcome to sit in on the lectures.

Lecture Topics

Course Introduction                                                           
Landscape Patterns                                   
Scale and Hierarchy on Landscapes                                                                                           
Class Projects                       
Species-Area Relationships                                                                                              
Island Biogeography                                                                                                                                        

Metapopulations                                           Paper Topic Due                                         
Macroecology & Biogeography                  Problem Set 1 Handed Out                        
Corridors, Dispersal and Invasion              Problem Set 1 Due                                               
                                                                        Midterm Examination                                               Paleoecology                                                                                               
Quantifying Landscape Pattern                                                       

Individual-based Models                                                                                         
Biodiversity Models                        
Reserves in Fragmented Landscapes       Paper Due, Prob Set 2 Handed Out                       
Thanksgiving Break

Case Study: Topographic influences on Vegetation Mosaics of the Southwestern US                       
Course Overview                                          Problem Set 2 Due

Course Reading

Plan to have papers read prior to each lecture. Digital copies (pdf format) are available on Blackboard.

Course Introduction 
Skelly, D. 2002. Landscape Ecology -- Definition. McGraw Hill Encyclopedia of Science & Technology, 9th Edition. []                       

Wiens, J. A. 1992. What is landscape ecology, really? Landscape Ecology 7:149-150.                       

Turner, M. G. 2005.Landscape ecology: what is the state of the science? Annual Review of Ecology and Systematics 36:319-344.                       

Landscape Patterns                       
Levin, S. 1992. The problem of pattern and scale in ecology. Ecology 73:1943-1967.

Scale and Hierarchy on Landscapes                       
Hoehn M, Sarre SD, Henle K 2007. The tales of two geckos: does dispersal prevent extinction in recently fragmented populations? Molecular Ecology 16:3299-3312.                       

Urban, M. C., D. K. Skelly, D. Burchsted, W. Price, and S. Lowry. 2006. Stream communities across a rural-urban landscape gradient. Diversity & Distributions 12:337-350.                       

Class Projects                       
Gurevitch, J., L. L. Morrow, A. Wallace, and J. S. Walsh. 1992. A meta-analysis of competition in field experiments. American Naturalist 140:539-572.                       

Gurevitch, J., and L. V. Hedges. 1993. Meta-analysis: combining the results of independent experiments. Pages 378-398 in Scheiner, S. M. and J. Gurevitch (Editors), Design and analysis of ecological experiments. Chapman and Hall, New York.                       

Cadotte, M. W. 2006. Dispersal and species diversity: a meta-analysis. American Naturalist 167:913-924.                       

Ecological Society of America. Instructions for Authors (website link).                       

Species-Area Relationships                       
Connor, E. F., and E. D. McCoy. 1979. The statistics and biology of the species area curve. American Naturalist 113:791-833.                       

Tittensor DP, Micheli F, Nystrom M, Worm B. 2007. Human impacts on the species-area relationship in reef fish assemblages. Ecology Letters 10:760-772.     


Island Biogeography                        
Gotelli, N. J. 2001. Island biogeography in A primer for ecology. Sinauer, Sunderland, MA.                       

Simberloff, D. S., and E. O. Wilson. 1969. Experimental Zoogeography of islands: the colonization of empty islands. Ecology 50:278-296.                                           

Simberloff, D. S., and L. G. Abele. 1976a. Island biogeography theory and conservation practice. Science 191:285-286.                       

Diamond, J. 1976. Island biogeography and conservation: strategy and limitations. Science 193:1027-1029.

Terborgh, J. 1976. Island biogeography and conservation: strategy and limitations. Science 193:1029-1030.

Whitcomb, R. F. et al. 1976. Island biogeography and conservation: strategy and limitations. Science 193:1030-1032.

Simberloff, D. S., and L. G. Abele. 1976b. Island biogeography and conservation: strategy and limitations. Science 193:1032.

Schoener, T. W. and D. A. Spiller. 1995. Effect of predators and area on invasion: an experiment with island spiders. Science 267:1811-1813. 

Hanski, I. and D. Simberloff. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation Pages 5-26 in Hanski, I., and M. E. Gilpin (Editors). Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego.                       

Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of North America 15:237-240.                       

Noon, B. R., and K. S. McKelvey. 1996. Management of the Spotted Owl: a case history in conservation biology. Annual Review of Ecology and Systematics 27:135-162.                       

Lande, R. 1988. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75:601-607.                       

Wiegand, T., F. Jeltsch, I. Hanski, and V. Grimm. 2003. Using pattern-oriented modeling for revealing hidden information: a key for reconciling theory and application. Oikos 100:209-222.                       

Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak. 1994. Habitat destruction and the extinction debt. Nature 371:65-66.                       

Macroecology & Biogeography                        
Brown, J. H., and B. A. Maurer. 1989. Macroecology: the division of food and space among species on continents. Science 243:1145-1150.                       

Lomolino, M. V., and R. Channell. 1995. Splendid isolation: patterns of geographic range collapse in endangered mammals. Journal of Mammalogy 76:335-347.

Thomas, C. D. et al. 2004. Extinction risk from climate change. Nature 427:145-148.

Corridors, Dispersal & Invasion                       
Beier, P. and R. F. Noss. 1998. Do habitat corridors provide connectivity? Conservation Biology 12:1241-1252.

Haddad, N. M., D. K. Rosenberg, and B. R. Noon. 2000. On experimentation and the study of corridors: response to Beier and Noss. Conservation Biology 14:1543-1545.

Noss, R. F., and P. Beier. 2000. Arguing over little things: response to Haddad et al. Conservation Biology 14:1546-1548.

Midterm Exam

Bush, M. B., M. R. Silman, and D. H. Urrego. 2004. 48,000 years of climate and forest change in a biodiversity hotspot. Science 303:827-829.

Quantifying Landscape Pattern                       
Turner, Gardner, and O'Neill. Chapter 4                       

Swanson, F. J., T. K. Kratz, N. Caine, and R. G. Woodmansee. 1988. Landform effects on ecosystem patterns and processes. BioScience 38: 92-98. (PDF)                       

Kramer MG, Hansen AJ, Taper ML, Kissinger EJ. 2001. Abiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 82:2749-68. (PDF)

NOVEMBER                I

ndividual-based Models                        
Pacala, S., and J. Silander. 1990. Field tests of neighborhood population dynamic models of two annual weed species. Ecological Monographs 60:113-134.

Pacala, S. W., C. D. Canham, J. Saponara, J. A. Silander, Jr., R. K. Kobe, E. Ribbens. 1996. Forest models defined by field measurements: estimation, error analysis, and dynamics. Ecological Monographs 66:1-43.

Casagrandi, R. and M. Gatto. 1999. A mesoscale approach to extinction risk in fragmented habitats. Nature 400:560-562.

Biodiversity Models                        
Prendergast, J. R. et al. 1993. Rare species, the coincidence of hotspots and conservation strategies. Nature 365:335-337.

Myers, N. et al. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.                       

Richards, S. A., H. P. Possingham, and J. Tizard. 1999. Optimal fire management for maintaining community diversity. Ecological Applications 9:880-892.

Reserves in Fragmented Landscapes                       
Green, S. 1998. Alternative approaches to selecting biodiversity reserves in Northwest Connecticut. Unpublished Masters Project, Yale School of Forestry & Environmental Studies.



Case Study: Topographic influences on Vegetation Mosaics of the Southwestern US                           
Poulos, H. M., A. H. Taylor, and R. M. Beaty. 2007. Environmental controls on dominance and diversity of woody plant species in a Madrean, Sky Island ecosystem, Arizona, USA. Plant Ecology 193(1): 15-30.      

Poulos, H. M., and A. E. Camp. In Press. Topographic influences on vegetation mosaics and diversity in the Chihuahuan Desert Borderlands


Course Overview                       
Kareiva P, Watts S, McDonald R, Boucher T. 2007. Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866-1869.

/* Google Code for Remarketing Tag */ /* Remarketing tags may not be associated with personally identifiable information or placed on pages related to sensitive categories. See more information and instructions on how to setup the tag on: */