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ABSTRACT 

This work presents an automated approach utilizing superpixel 
segmentation for detecting spectrally Neutral Regions (NR) in 
hyperspectral images. NRs are often used in planetary geology as 
spectral divisors to Regions of Interest (ROI), both to enhance key 
mineralogical signatures and correct for systematic errors such as 
residual atmospheric distortion. We compare automated NR 
selections to handpicked examples with mineralogical summary 
products used in analysis of data from the Compact 
Reconnaissance Imaging Spectrometer for Mars (CRISM). We 
also present a new summary product to quantify the level of 
atmospheric distortion in a CRISM spectrum. We find that the 
automated algorithm matches manual NR detection with regards to 
mineral spectral contrast and outperforms manual selection for 
reducing atmospheric distortion.  
 

Index Terms— hyperspectral, CRISM, superpixel, neutral 
region, toolbox, ATMO 

1. INTRODUCTION 

While hyperspectral images are fairly directly interpretable given 
pure sample pixels and a prior known library, planetary science 
applications present complications including impure mineral 
constituents even at the sub-pixel level, dust and debris lying above 
the substrate, and contributions from unknown minerals [1]. 
Techniques to reduce noise, correct systematic errors, and enhance 
faint spectral features thus become vital to useful interpretation. 
 One common strategy for enhancing interesting mineral 
features in reflectance spectra is the division of a feature target by 
a neutral spectrum [2][3][4][5]. This neutral spectrum is generated 
by averaging over a Neutral Region (NR) drawn from the same 
image. The NR is not precisely defined: should be spectrally 
“bland,” i.e. lacking the spectral features of interest. Instead, it is 
comprised of the background continuum and any noise artifacts or 
atmospheric absorption features that are common across the entire 
image (Figure 1). The neutral spectrum then serves as a divisor to a 
target spectrum: 
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This yields a spectral reflectance curve relative to the surrounding 
spectral background as characterized by the NR. Ideally the ratioed 
spectrum enhances important features unique to the target and 
reduces incidental features common to both. The quality of the 
result hinges on finding an appropriate NR.  

Currently NR selection requires a time consuming 
manual trial and error search across many pixels, with the final NR 
chosen by the expert judgment of the analyst. Often geologists 
prefer regions that are visually dark (absorptive, not shadowed) 
and have fairly spatially uniform texture. Dusty, sandy or granular 
regions are often chosen due to the nonlinear convolution 
properties of multiple scattering sources. If these small scattering 
bodies are dark (absorptive), it can be shown that distinctive 
mineral features are generally suppressed relative to the continuum 
background making them ideal for NR selection. Ultimately, 
however, any measure of the acceptability of the NR is left to 
intuition and observed desirable effects. Suboptimal NR selection 
can introduce unwanted artifacts since those features unique to the 
NR appear as inverted distortions in the ratio. A NR that contains 
some trace of a mineral of interest could reduce rather than 
enhance a desired spectral feature. In some scenes, features of 
interest are present in every NR forcing suboptimal choices.  

 
Figure 1 Original, Neutral, and Ratioed spectra for ROI in 
CRISM scene 863e. Yellow region shows characteristic 
residual CO2 atmospheric absorption features. Absorption 
within blue region identified by expert as diagnostic for 
FeMgSmectite. 

Localized instrument artifacts such as “push-broom” 
column striping can also complicate NR identification [1]. In the 
case of the Compact Reconnaissance Imaging Spectrometer for 
Mars (CRISM) [9], each column of an unprojected / ungeorectified 
image represents a single detector with a unique spectral response 



curve. Analysts typically correct for calibration error through 
division by a planetary standard spectrum of Olympus Mons [6], 
but this can leave residual errors due to local atmospheric 
phenomena or time-varying instrument artifacts. To ideally 
exercise the NR technique, a NR should share precisely the same 
columns (detectors) as a target Region of Interest (ROI). 
Additionally, if the target is the average spectrum of a region of 
interest, the associated NR should have a similar shape and size in 
order to appropriately weigh contributions from each column / 
sensor. In practice, this last constraint is difficult to satisfy and 
almost never used. The more general shared column constraint, 
however, is commonly obeyed. It should be noted that the NR 
technique does not represent a means to reduce shot noise and 
actually increases the effects of random errors. We moderate this 
effect through a superpixel noise reduction strategy [7]. Superpixel 
segmentation is an edge-preserving method for reducing spatially 
uncorrelated noise.  It splits the image into small contiguous, 
homogeneous fragments and draws representative spectra from 
each.  This preserves column relationships for NR selection [8]. 

In an attempt to formalize and automate the NR selection 
process, we have developed an algorithm for identifying NRs. We 
evaluated the method with a new summary product that estimates 
the residual atmospheric distortion in a spectrum. Correction for 
this distortion along with target mineral spectral feature contrast 
was taken as a numerical estimate of overall acceptability for a 
given NR. We have demonstrated our automated NR technique 
with CRISM images and compared the result to manual NR 
selection by a planetary geology expert. CRISM exhibits higher 
noise levels than most Earth-based hyperspectral images, and the 
superpixel segmentation strategy significantly enhances the 
selection of useful NR.  

 
Figure 2 Subsection of CRISM image FRT00003E12. The 
yellow region is the manually selected image-wide NR. Red and 
blue are the target ROIs. Green and cyan show manually 
selected NRs. 

2. AUTOMATED NEUTRAL REGION DETECTION 

We first utilize the relative simple Felzenswab image segmentation 
method [7] to generate regions of spectral similarity. Two 
hyperparameters control this segmentation: a tolerance parameter 
for internal spectral variability within a segment, and a minimum 
permissible segment size. We then consider each segment as a 

potential NR. Recalling the definition of a NR above, we recognize 
that a properly representative NR should share the columns of the 
target region and lack the key diagnostic features of the target ROI. 
However, as we are constructing an automated process that 
requires no user input, we attempt to minimize all spectral features 
within the NR. We simply fit a line to each L1 normalized mean 
super-pixel segment spectrum in the image using the range 1000 – 
2600 nm. The best-fit line minimizes RMS error, and the lowest 
RMS is interpreted as the most neutral spectrum. For other images, 
instruments, or spectral regions possessing large-scale spectral 
structure it might be preferable to fit a spline or higher order 
polynomial, but it our case a line was sufficient and better 
characterizes CRISM spectral continuum.  

3. EVALUATION CRITERIA 

We examined three well-studied CRISM targeted images 
(FRT0000)3e12, 863e, and 3fb9 focusing on the 1000-2600 nm 
spectral region. Each image is roughly 640 x 480 with 234 
included bands. This spectral region is diagnostic of many Martian 
minerals of interest (Table 1). However, it is also plagued by a 
systematic CO2 atmospheric absorption feature at 1920-2080 nm 
[10]. A planetary geologist expert provided manually constructed 
target ROIs that exhibited novel spectral absorption features 
indicative of significant mineral deposits.  These potential deposits 
include minerals such as phyllosilicates and other products of 
aqueous alteration. These interesting features were often extremely 
faint compared to the background spectral features. Each ROI is 
associated with one or more CRISM summary products [11] from 
the CRISM Analysis Tool (CAT) toolbox [12]. These scalar 
metrics measure absorption depth at discriminating spectral 
locations useful for identifying Martian mineralogy (e.g. D2300’s 
focus region is shown in Figure 1).  We paired each ROI with a 
manually-selected NR from the same column.  The expert also 
provided a generic NR for the entire image for situations in which 
the target region is unknown. A total of 11 target ROIs were 
included in our analysis across the three images along with their 
associated manually selected NRs. 
 
Table 1 – Identified ROIs & Contrast Metric 

Image Mineral ID CAT Summary Product [11] 

3e12 Magnesite BDCARB 

3e12 Olivine OLINDEX 

3e12 Phyllosilicate BD1900, D2300 

3fb9 Carbonate BDCARB 

3fb9 Kaolinite BD2210 

3fb9 Olivine OLINDEX 

3fb9 Phyllosilicate BD1900, D2300 

863e FeMgSmectite BD1900, D2300 

863e Kaolinite BD2210 

863e Montmorillonite BD1900 

863e Nontronite BD1900, D2300 
 

To compare the automated NR detection algorithm with 
the expert-provided manual NRs, we evaluated the ratioed 
spectrum for 1) the strength of target spectral features and 2) the 



degree of atmospheric distortion remaining. Each image contained 
several expert-identified ROIs associated with a particular mineral 
blend of interest. CRISM summary products [11] as implemented 
in the CAT toolbox [12] were then associated with each mineral 
per the expert’s identifications. We then compared these summary 
products before and after ratioing using a variety of potential NRs. 
It should be noted that NR selection is constrained by the available 
image and further by the column so that a mineral’s signal might 
actually be reduced by any candidate NRs. Our task in this case is 
to minimize the contrast loss from the NR technique. 

Motivated by the utility of the CRISM summary 
products and lacking an existing metric, we created a new measure 
(ATMO) to quantify residual atmospheric absorption. Shown in 
Figure 1 as a yellow shaded region, the band of atmospheric 
absorption manifests several characteristic oscillations between 
1920-2080 nm. ATMO is defined by fitting a 2nd order polynomial 
to these bands. The reported value is one minus the coefficient of 
determination (R2) producing 
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where S is the reflectance intensity. Thus, a value of 0 represents a 
perfectly smooth 2nd order surface (no residual atmospheric 
absorption), while a value of 1 represents strong oscillatory 
departure from baseline (high residual atmospheric absorption). 
Note that this is a separate model unrelated to the linear fit over the 
wider spectrum used to detect potential NRs. As a properly chosen 
NR should reduce the systematic atmospheric distortion residual in 
the ratioed spectrum, we monitor the ATMO measure both before 
and after neutral spectrum ratioing as a second gauge of successful 
NR choice. 

4. EXPERIMENT & RESULTS 

We evaluated the associated summary product for each of the 
eleven target ROIs both before and after ratioing using the 
following neutral regions: 
1) None (original superpixel spectrum),  
2) Manual whoe-image NR 
3) Manual column-constrained NR associated with each ROI,  
4) Automated whole-image NR selection 
5) Automated column-constrained NR.  
We evaluated the linear fit criterion using various values for the 
segmentation parameter defining the smallest permissible 
superpixel. We found a minimum size of 40-60 image pixels was 
consistently optimal across all metrics, and we report results for 
minimum size equal to 60 pixels. A second parameter that controls 
the superpixel internal variability tolerance (k) was fixed to 
0.0001; previous studies have found segmentation results to be 
robust despite significant alteration of this value. 
 Figure 3 shows resulting changes in mineral contrast as 
measured by the associated CRISM summary products. The 
manually selected NRs often reduced relative mineral contrast in 
the target ROIs indicating NR contamination with features of 
interest. The automated method is competitive with the manual 
method to within error. Column constraints do not improve NR 
selection to within our sampling error. This could be due to the 

column constraint limiting the selection of candidate NRs even as 
it ensures noise characteristics are similar to the target. 
 

 
Figure 3 The CRISM summary products associated with each 
target ROI and the effects of NR ratioing. Higher is better. The 
automated method is competitive with manual NR selection. 

 Figure 4 replicates this same comparison using the 
ATMO parameter measure for residual atmospheric distortion. 
Here, it is seen that all NR techniques significantly reduce ATMO 
by 80-90% with our automated method performing equally well as 
manual selection to within error.  
 

 
Figure 4 ATMO product of target ROIs before and after 
various NR selections. Lower is better. Automated method is 
competitive and very slightly superior to manual selection, but 
both greatly improve the unratioed result. 

While the strong decrease in ATMO for both automated 
and manual NR selection is promising, it does not in itself 
demonstrate the value of the linear fit criterion. Any improvement 
must be significant compared to chance (i.e. the random selection 
of a NR). To validate the automated method we completed an 



exhaustive comparison of ATMO variation using a global image-
wide NR (Figure 5 & Table 2). We first measured the raw ATMO 
of each segment’s mean spectrum (“Original”, black) in a given 
image. We then paired each segment with every other segment as a 
potential divisor, generating an exhaustive N x (N-1) set of ATMO 
values (“Ratio Exhaustive”, blue). This nearly uniform distribution 
shows that it is possible to significantly harm the ATMO measure 
by arbitrary NR selection. We then took the ratio of the segments 
with the manual global NR (“Ratio Manual Picks”, magenta).  

While manual selection improved the ATMO 
distribution, a significant number of segments retained high 
atmospheric distortion. The linear fit criterion was then used to 
select an image-wide NR (“Ratio Linear Picks”, green), resulting 
in a more dramatic reduction in ATMO. Finally, for completeness 
we show the distribution of the best possible ATMO for each 
segment given exhaustive knowledge of all possible ratios (“Ratio 
Best Possible”, red). This distribution is not truly fair, since it 
results from an exhaustive search that seeks to minimize the exact 
evaluation criterion. A true NR must not only decrease ATMO but 
also maintain mineral contrast. Atmospheric absorption can be 
difficult to model explicitly so the NR criterion should identify 
NRs that can correct atmospheric artifacts other than those within 
the NR selection criterion. However, this best possible ratio does 
show the limit of ATMO reduction ignoring other considerations. 
Figure 5 and Table 2 both represent the same data, resulting from 
the union of all three image scene distributions. 

 
Figure 5 Distributions of ATMO values for the original 
segment spectra and ratioed spectra derived from various NR 
selection strategies. Left is better. The line fit criterion 
performs better than all other general techniques.   

Table 2 – Original & Ratioed ATMO Values 
 Mean 
Original 0.61 
Ratio Exhaustive 0.48 
Ratio Manual Picks 0.38 
Ratio Linear Picks 0.26 
Ratio Best Possible 0.02 

6. CONCLUSION 
 
We have shown that a simple RMS residual to a line fit, when 
combined with a superpixel segmentation, can match an expert 
manual NR selection for mineral contrast preservation and 
outperform it for reducing atmospheric distortion as measured by 
the ATMO metric. The NR technique was also shown to 
occasionally reduce mineral contrast, but the automated algorithm 
helped to mitigate this effect.  
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