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ABSTRACT
Automated analysis of hyperspectral imagery can inform ob-
servation planning and tactical decisions during planetary
exploration. Timely analysis can draft mineralogical maps to
focus analysts attention on areas of interest or facilitate data
mining in large hyperspectral catalogs. In this work, sparse
spectral unmixing with Bayesian Positive Source Separation
produces mineral abundance maps from Mars Reconnais-
sance Orbiter Compact Reconnaissance Imaging Spectrome-
ter (CRISM) images. We demonstrate a novel “superpixel”
segmentation strategy to enable efficient unmixing in an in-
teractive session. Tests correlate automatic unmixing results
based on redundant spectral libraries against hand-tuned in-
dicator functions currently in use by CRISM researchers.

Index Terms— Sparse Unmixing, CRISM, Hyperspec-
tral Images, Superpixels, Image Segmentation

1. INTRODUCTION

Planetary exploration scenarios hold special challenges for
hyperspectral image analysis. With the exception of isolated
landing sites there is no ground-truth compositional data from
the surface. The number and character of spectral sources is
unknown. A trained analyst might infer constituents through
inspection, but increasing data volumes will preclude com-
prehensive analysis of this kind. For example, the Compact
Reconnaissance Imaging Spectrometer (CRISM) aboard the
Mars Reconnaissance Orbiter [1] is collecting images at un-
precedented spatial and spectral resolution. It will return over
a terabyte of data to Earth over its nominal mission, which is
far larger than our capacity for exhaustive manual study.

Timely analysis will require techniques that automatically
search an image and summarize possible constituents. With
some oversimplification we can categorize current search
strategies as “supervised” or “unsupervised.” Supervised
methods use a detection function, developed on previous data
by hand or statistical techniques, to identify one or more spe-
cific target signals. For example hand-selected band ratios
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can reveal spectral features that are diagnostic of particular
minerals [2, 3]. Other supervised detection strategies exploit
classifiers such as neural networks [4] or decision trees [5].
These are suited to focused searches for specific mineral
types; they may not notice unanticipated or anomalous min-
eralogy. The detection decision does not always generalize
to new scenes and in general only detect constituents that
have already been observed and for which training data is
available. Alternatively, unsupervised techniques like PCA
summarize the structure inherent in each new image. Purely
unsupervised results are not always physically meaningful,
and may ignore subtle or localized mineralogy since they aim
to minimize reconstruction error over the entire image.

Here we examine a spectral unmixing approach to min-
eralogical search. A sparse Bayesian approach to spectral
unmixing computes statistically likely combinations of con-
stituents based on a set of possible sources with uncertain
abundancess. Our approach leverages a redundant library of
source spectra from laboratory experiments or previous re-
mote observations. A “superpixel” segmentation strategy im-
proves analysis time by orders of magnitude, permitting in-
corporation into an interactive user session. Preliminary tests
suggest that the Bayesian spectral unmixing approach can as-
sist analysis of CRISM data and hyperspectral imagery in
general.

2. APPROACH

We use a linear mixing model where m source spectra in w
wavelengths combine to yield n observations:

xλ = Asλ +N (0, σ2) (1)

Each wavelength λ is associated with an n × 1 observation
vector xλ, and an m×1 source vector sλ. Here A is an n×m
mixing matrix whose entries describe the contribution of each
source signal to the resulting observation. We assume addi-
tive zero-mean Gaussian noise of variance σ2. More generally
one can treat the entire spectrum of independent wavelengths
as columns of an m×w source matrix S and an n×w obser-
vation matrix X. We will index matrix entries with subscripts



so that the ith observation on bandwidth λ is Xiλ. Given
source and observation matrices, the unmixing problem aims
to recover the mixing matrix A.

2.1. Sparse Bayesian Unmixing

Our geographic linear mixing model places several con-
straints on A. Minerals’ reflectances represent fractions of
incident illumination and combine in proportion to their abun-
dance on the imaged surface. To reflect this physical intuition,
entries of A must be zero or positive. Standard non-negative
unmixing strategies minimize squared reconstruction error
while enforcing positivity as in Nonnegative Matrix Factor-
ization [6]. However, in our case there is another important
constraint: the source library may be highly overcomplete.
In other words, it will certainly contain many more possible
sources than actually exist in the scene. As a result we must
favor sparse solutions where most entries of A are zero.

We enforce both non-negativity and sparsity using an ex-
ponential prior distribution G parameterized with rate hyper-
parameter α, on entries of the mixing matrix. From Bayes’
rule:

p(A|X, α) ∝ p(X|A)p(A|α) (2)

∝
∏
iλ

N (Xiλ − [AS]iλ, σ2)
∏
ij

G(Aij , α) (3)

∝
∏
iλ

exp
{
−(Xiλ − [AS]iλ)2

2σ2

} ∏
ij

exp{−αAij}(4)

We maximize this probability with an iterative gradient de-
scent procedure similar to that described by Moussaoui et al.
[7]. Taking log p(A|x, α) and dropping constant terms pro-
duces the objective function V(A):

V(A) = − 1
2σ2

∑
iλ

(Xiλ − [AS]iλ)2 −
∑
ij

αAij (5)

Note that this amounts to a least-squares error minimiza-
tion with an L1-norm penalty term, similar to the sparsity-
inducing LASSO estimator [8]. We maximize this with
iterative ascent of the gradient of V(A) with respect to A:

∇Aij
V(A) = [(X−AS)ST ]ij − α (6)

The density of the exponential distribution is zero for nega-
tive values of A. Our subgradient-inspired approach replaces
negative gradient values with zero for entries Aij within nu-
merical tolerance of zero. This produces an n × m matrix
Ψ(A) representing the update direction:

Ψij(A) =
{
∇Aij

V(A) ifAij ≥ 0
0 otherwise (7)

The iterative update at time t follows the update direction Φt

for the positive step size β:

At = At−1 + βΦt (8)

At each step we identify the optimal step size β with a line
search. Finally, we estimate the noise parameter σ from the
reprojected observations as in Moussaoui et al [7], fitting
noise and mixing parameters in turn until reaching a local
optimum. This strategy generally identifies a local Maximum
A Priori estimate in less than 100 iterations, permitting real-
time, interactive spectral unmixing of user-selected image
regions.

2.2. Image Segmentation

Segmentation provides several advantages to mineralogical
search. In general we aim to draft compositional maps for
large scale data mining of trends and detection of novel min-
eralogy. This suggests analysis of entire images containing
thousands or millions of distinct spectra, but the spectral un-
mixing algorithm is still too slow to exhaustively unmix all
pixels during an interactive session. Segmentation permits a
single mean spectrum to stand in for many pixels, potentially
improving run time by orders of magnitude. In addition, seg-
mentation counters pixel-level noise that might otherwise pro-
duce false positive detections. Real (non-noise) signals gen-
erally come from objects such as outcrops that subtend sev-
eral adjacent pixels in the high resolution imagery. We can
exploit this fact by analyzing the mean spectra of physically-
connected regions within the image.

Fig. 1. Here a subwindow of observation frt0003e12 demon-
strates the superpixel segmentation. Finer segmentations pro-
vide additional resolution at the cost of greater computation
time and sensitivity to noise. Left: Original subimage. Cen-
ter: coarse segmentation, minimum region size 100. Right:
fine segmentation, minimum region size 20.

For mineralogical search important that small outlier units
of surface material are given independent segments. Con-
versely, larger units of surface material can safely be split into
multiple segments with minimal effect on performance. This
leads us to intentionally oversegment the scene, a technique
known in the Computer Vision community as superpixel seg-
mentation. Each superpixel provides some small connected
image region that is compositionally homogeneous [9]. We
favor segmentations that produce 3000-5000 superpixels; un-
mixing them requires approximately 20 minutes to analyze a
single image with a modern desktop processor.

We compute superpixels with a graph segmentation ap-
proach. We treat the grid of image pixels as an 8-connected
graph of vertices and edges with a weight d(Xi,Xk) between



neighboring pixels defined as the sum of squared differences
at all wavelengths:

d(Xi,Xk) =
∑

λ

(Xiλ −Xkλ)2 (9)

We cluster pixels by merging them into successively
larger subgraphs using the technique of Felzenszwalb et al
[10]. The Felzenszwalb criterion merges neighboring sub-
graphs whenever the weight associated with their smallest
connecting edge is some threshold larger than the minimum
internal weight in either subgraph. A final postprocessing
step merges regions smaller than a minimum size. Important
advantages of this algorithm are efficiency and the ability to
segment hyperspectral data based on a hyperspectral distance
measure. Additionally it can trade speed for accuracy depend-
ing on merging thresholds and minimum region size (Figure
1). We refer the reader to [10] for details of implementation.

3. EVALUATION

A case study analyzes spectra for CRISM Infrared wave-
lengths from 1.0µm to 2.5µm. We quantify the correlations
for images FRT00003e12 and FRT00003fb9 from the Nili
Fossae region (later we omit the “FRT0000” prefixes for
clarity). Spectra from the first image suggest Olivine and
Phyllosilicate minerals [11], while the latter also evidences a
strong Olivine signature with evidence for Carbonates such as
Magnesite [12]. The source matrix for image 3e12 consists of
spectra drawn from the MRO/CRISM spectral library. These
include 27 examples of Olivine and 59 examples of phyl-
losilicates such as Montmorillonite, Nontronite, Saponite,
Kaolinite, and Illite. We also augment image 3fb9’s library
with examples of Magnesite and Hydromagnesite. This di-
versity helps to account for variation within mineral species.
We L1-normalize all source spectra during unmixing so that
a common hyperparameter α affects all sources equally. Fi-
nally, we append 10 featureless line spectra to the library to
compensate for arbitrary additive offsets and constant slopes.

Figure shows a typical result for CRISM image 3e12. The
topmost figure shows the locations of two samples evidencing
strong signals of Olivine and Phyllosilicate respectively. Fig-
ures b and c show these two spectra with thick red lines indi-
cating reconstructions from the sparse mixture result. Figure
d shows the top constituents recovered for the Olivine site —
unsurprisingly each constituent is an instance of Olivine from
the source library. Figure e shows top constituents at the Phyl-
losilicate site. Here a phyllosilicate (Kaolinite, in red) appears
alongside two Olivine samples.

We compute abundance maps for Olivine and Phyllosili-
cate minerals by aggregating the coefficients of all the min-
erals from each class. Our evaluation compares these to two
hand-tuned summary products currently in use by Mars sci-
entists, the OLINDEX and D2300 indicators [2]. These are
functions based on slope and band depth that respond strongly

(a) frt00003e12 (R : 2.0µm,G : 1.5µm,B : 1.1µm)

(b) Olivine reconstruction (c) Phyllosil. reconstruction

(d) Olivine top sources (e) Phyllosilicate top sources

(f) Olivine abundance (g) Phyllosilicate abundance

(h) OLINDEX Index (i) D2300 Index

Fig. 2. Sparse unmixing of CRISM image frt00003e12.



to olivine and phyllosilicates respectively. Figures f-i show
abundance maps and corresponding summary products.

We consider both a coarse and fine superpixels with min-
imum sizes of 20 and 100 pixels for each image. Figure 3
shows correlations between the automated abundance maps
and the indicator functions for the two segmentations. The
columns, from left to right, show: the mineral type and index
used, the CRISM image, the number of superpixels for coarse
(C) and fine (F) segmentations, the linear correlation between
abundance maps and the selected index, the Spearman’s ρ
rank correlation coefficient, the precision score, and the re-
call score. These last two scores are produced by thresholding
summary indices and abundance maps at an appropriate level
to yield a binary detection decision at each pixel. Precision
considers the fraction of automatic detections that are actu-
ally present in the summary product, while recall describes
the percentage of summary product detections that are auto-
matically recovered. We advise caution in interpreting this
result since the summary products themselves do not consti-
tute a ground truth judgment on the presence or absence of a
mineral, so in the case of discrepancies either method might
be erroneous.

Index Image n corr ρ prec rec
Olivine 3e12 (C) 664 0.87 0.91 0.89 0.81

(OLIND) (F) 3667 0.90 0.95 0.92 0.83
Olivine 3f8b (C) 594 0.87 0.90 0.91 0.86

(OLIND) (F) 3676 0.92 0.94 0.94 0.87
Phyllosil. 3e12 (C) 664 0.67 0.46 0.76 0.55

(D2300) (F) 3667 0.73 0.49 0.80 0.53

Fig. 3. Comparative evaluation (see text for details).

4. DISCUSSION

The unmixing strategy achieves high correlation with the
specific detection algorithms despite being a fully-automated
“general” detection method. The unmixing result is fully
interpretable; its value traces to a specific unmixing result
composed of particular component minerals. Lower correla-
tion and Spearman ρ scores for the Phyllosilicate indicator
reflect the smaller percentage of this material in the image; ir-
relevant low-abundance superpixels dominate the score. The
automatic method successfully detects Hydromagnesite in
image 3fb9, but we exclude this from our tests since standard
carbonate summary products fail to detect this signal.

We have presented preliminary results from an unmixing
approach to mineralogical search and survey in large image
catalogs. Exponential priors encourage a sparse unmixing
solution and a graph-based “superpixel” segmentation com-
presses high-resolution hyperspectral images for improved
speed. Rather than looking for diagnostic slopes or band
depths, which may be at or below the level of noise, the

unmixing approach computes abundances by generating the
mixture to explain the entire spectral waveshape. Leveraging
sparse, adaptive unmixing may eventually improve detection
sensitivity beyond that offered by static decision rules. We
believe the ability to quickly search mineral catalogs with
a fully automated, general procedure makes the technique a
promising candidate for rapid hyperspectral image analysis.

We performed this research at the Jet Propulsion Labora-
tory with support from the Advanced Multi-Mission Opera-
tions System (AMMOS). Copyright 2009 California Institute
of Technology. Government Sponsorship Acknowledged.
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