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ffectiveness of using multi-temporal satellite imagery, field spectral data, and
LiDAR top of canopy data to classify and map the common plant communities of the Ragged Rock Creek
marsh, located near the mouth of the Connecticut River. Visible to near-infrared (VNIR) reflectance spectra
were measured in the field over the 2004–2006 growing seasons to assess the phenological variability of the
dominant marsh plant species, Spartina patens, Phragmites australis and Typha spp. Phragmites was best
distinguished from other species by its high NIR response late in the growing season. Typha spp. had a high
red/green ratio and S. patens had a unique green/blue ratio relative to other species throughout the bulk of
the growing season. The field spectra and single date (2004) LiDAR canopy height data were used to define an
object-oriented classification methodology for the three plant communities in multi-temporal QuickBird
multispectral imagery collected over the same time interval. The classification was validated using an
extensive field inventory of marsh species. Overall maximum fuzzy accuracy for the classification was 97% for
Phragmites, 63% for Typha spp. and 80% for S. patens meadows and improved to 97%, 76%, and 92%,
respectively, using a fuzzy acceptable match measure. This study demonstrated the importance of the timing
of image acquisition for the identification of targeted plant species in a heterogeneous marsh. These datasets
and protocols may provide coastal resource managers, municipal officials and researchers a set of
recommended guidelines for remote sensing data collection for marsh inventory and monitoring.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Coastal wetlands are a critical and dynamic component of the Long
Island Sound ecosystem. Over the past century, a significant amount of
these wetlands has been lost due to development, filling and dredging,
or damaged due to anthropogenic disturbance and modification. Global
sea level rise is also likely to have a significant impact on the condition
and health of coastal wetlands, particularly if the wetlands cannot
migrate due to dense coastal development (e.g., Donnelly & Bertness,
2001). In addition to physical loss ofmarshes, the species composition of
marsh communities is changing. Spartina alterniflora (saltwater cord-
grass) and Spartina patens (salt meadow grass), once the dominant
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species of New England salt marshes, are being replaced by mono-
cultures of the non-native genotype of Phragmites australis (Cav.) Trin. ex
Steud (common reed) in Connecticut marshes (Barrett & Prisloe, 1998;
Chambers et al., 1999; Orson, 1999; Warren et al., 2001). Phragmites
outcompetes other marsh species in areas with increased fresh water,
nitrogen and sediment and its presence is positively correlated with
marsh fragmentation (Moore et al.,1999; Bertness et al., 2002; Bart et al.,
2006). In response to the increase of Phragmites in many marshes,
several government agencies, academic institutions, and conservation
organizations have instituted efforts (commencing in the 1980s) to
restore marsh health, including the eradication of Phragmites in some
areas. The response of marshes to eradication includes both an increase
of non-Phragmitesmarsh species and Phragmites reinvasion (Farnsworth
& Meyerson, 1999; Meyerson et al., 2000).

With the mounting anthropogenic and climatic pressures on
coastalwetland areas, it is becoming increasingly important to identify
and inventory the current extent and condition of wetlands located
throughout the coastal region of the Long Island Sound estuary,
implement a cost effective method to track changes in the condition of
l spectral and structural information to map wetland vegetation in a
08), doi:10.1016/j.rse.2008.05.020
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wetlands over time, and monitor the effects of habitat restoration and
management activities. Because marsh fieldwork is labor intensive,
remote sensing is an efficientway to characterize coastal wetlands due
to its synoptic coverage and repeatability. For management applica-
tions, image data must be of high enough spatial and spectral
resolution to effectively identify stands of each species without being
cost-prohibitive. This has led many workers to develop classification
methods using widely available high spatial resolution, low spectral
resolution image data such as aerial photographs (e.g., Shima et al.,
1976; Phinn et al.,1999; Shuman&Ambrose, 2003;Maheu-Giroux&de
Fig.1. Location of Ragged Rock Creekmarsh, Old Saybrook, Connecticut. July 20, 2004 4-2-1 Q
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Blois, 2005) or to use coarse-resolution (30m–1km)multispectral data
(e.g., Donoghue & Shennan, 1987; Arzandeh & Wang, 2003). These
methods aremost successful at identifying large-scale stands of dense,
monotypical species, but have limited applicability to meter-scale
mappingof individual specieswithin a heterogeneousmosaic ofmarsh
plants. Improved vegetation maps have been produced using tradi-
tional supervised and unsupervised classifiers on high spatial resolu-
tion multispectral and hyperspectral data (e.g., Underwood et al.,
2003; Schmidt et al., 2004; Belluco et al., 2006; Wang et al., 2007;
Pengra et al., 2007; Sadro et al., 2007; Laba et al., 2008). These
uickBird image of the mouth of the CT River, inset refers to location of study site in Fig. 2.

l spectral and structural information to map wetland vegetation in a
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Fig. 2. September 12, 2004 4-2-1 QuickBird image of Ragged Rock Creek marsh, (a) overview of marsh, (b) Site 1, and (c) Site 2. Arrows indicate approximate areas where reflectance
spectra were measured in the field throughout the growing season. Spectra were measured at Site 1 in 2004 and Site 2 in 2005 and 2006.
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Table 1
Dates of data acquisition at Ragged Rock Creek marsh

Regular font indicates QuickBird image collection, bold font indicates field spectra
collection, italics indicate airborne LiDAR data collection. Underlined dates indicate the
QuickBird images used in classification.
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classification methodologies are based on image and/or ground
reference data measured on a single date, which limits their
applicability to images taken at other times. Vegetation phenology
has long been recognized to be useful in discriminating species for
vegetation mapping (e.g., Reed et al., 1994; Key et al., 2001), as the
spectrum of a single species may vary throughout the growing season
due to variations in the amount and ratios of plant pigments, leafwater
content, plant height, canopy effects, leaf angle distribution and other
structural characteristics. Previous work on the classification of marsh
vegetation using multi-temporal image data (Dennison & Roberts,
2003; Belluco et al., 2006; Judd et al., 2007) and LiDAR data (Rosso
et al., 2006) relies on judicious identification of endmembers, often
derived from extensive field measurements. Such field measurements
may be impractical if a goal is to inventory vegetation in even a small
number of marshes. Endmember selection can be enhanced using
image processing algorithms (e.g., Dennison & Roberts, 2003; Judd
et al., 2007). In this work, we take a different approach, and test a new
method to relate field measurements at a limited number of sites to
image classification of an entire marsh.

Several studies demonstrate significant spectral differences between
marsh plant species in both field reflectance data (Hardisky et al., 1986;
Zhang et al., 1997; Schmidt & Skidmore, 2003; Gao & Zhang, 2006) and
hyperspectral (Gross & Klemas, 1986) reflectance data at various times
during the growing season. Laba et al. (2005) computed the derivatives
of field reflectance spectra of purple loosestrife, Phragmites and cattail in
the Hudson River estuary weekly throughout the growing season and
determined that these species were best differentiated in late August.
Artigas and Yang (2005) measured reflectance spectra of Phragmites in
the field throughout the growing season and determined that the
spectra were significantly separable, and that characteristics of the field
spectra correlated with seasonal patterns of vigor interpreted from
classified hyperspectral AISA data of the New Jersey Meadowlands. The
results of these studies suggest that phenological variability of the VNIR
reflectance of marsh plants can guide image classification, however
none of these studies do so.

The purpose of this study was to propose and evaluate a novel
approach, where characteristics of field reflectance spectra of marsh
vegetation measured over the growing seasonwere used to direct the
classification of high spatial resolution multi-temporal QuickBird data
(2.4m/pixel) of a Connecticut marsh. This is the first known attempt to
use field reflectance characteristics to define rules for the classification
of multi-temporal image data. Single date LiDAR data also contributed
to the classification. Our goals were to: 1) determine the optimal times
during the growing season for the discrimination of individual marsh
plant species based on spectral reflectance and structure measured in
the field, and 2) assess the utility of these field data to direct the
classification of multi-temporal, multispectral images of the entire
marsh, with particular attention to the mapping of the invasive
species Phragmites. Additionally, we sought to provide mapping
protocols that can be used to identify a single species, such as Phrag-
mites, from a single date of multispectral imagery, as these data are
likely to be the most accessible to land managers.

2. Study site

Ragged Rock Creek marsh is a 142-hectare brackish tidal marsh
located on the western bank of the Connecticut River, approximately
2.5km north of its confluence with Long Island Sound (Fig. 1). The
vegetation at Ragged Rock Creek marsh is typical of Connecticut's
estuarine tidal marshes, where the pattern of growth is generally
controlled by salinity, a function of tidal inundation and therefore
elevation. The appearance of the vegetation at Ragged Rock Creekmarsh
is a mosaic, ranging from patches of monospecific dominants with
discrete boundaries, to mixed-species patches with more diffuse
transitions (Fig. 2). While our field survey identified 115 plant species
at Ragged Rock Creek marsh (see Section 3.2), the vegetation was
Please cite this article as: Gilmore, M. S., et al., Integrating multi-tempora
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dominated by three communities: 1) saltmeadowgrass (S. patens) often
mixed with spike rushes (Eleocharis species), 2) narrow-leaved cattail
(Typha angustifolia) and hybrid cattail (Typha × glauca) and 3) non-native
common reed (P. australis). Typha spp. and Phragmites occupied themid-
to high marsh areas and upper border, typically forming dense
monotypic stands. The distribution of Phragmites was strongly corre-
lated to themosquito ditches that exist throughout themarsh, a pattern
that has been documented in other studies (e.g., Bart & Hartman, 2000).

3. Data processing and methods

3.1. Spectral data collection and processing

Reflectance spectra were obtained using an ASD Fieldspec FR®
spectroradiometer (Analytical Spectral Devices, Boulder, CO) with a
wavelength range of 350–2500nm, a sampling interval of 1.4nmbetween
350–1000nmand2nmbetween1000–2500nm, anda spectral resolution
of 3nm between 350–1000nm and 10nm between 1000–2500nm.
Individual spectral measurements were an average of 5–10 scans and
each canopy was generally sampled 10 or more times. These samples
were thenaveraged toprovide a single spectrum foreach target forwhich
a standarddeviationwas calculated. Reflectance spectrawerenormalized
to a white Spectralon® (Labsphere, Inc., North Sutton, NH) panel.

Reflectance spectrawere collected for the threedominant vegetation
communities at two sites in Ragged Rock Creek marsh (Fig. 2): S. patens
meadows (S. patens ± Eleocharis spp., hereafter referred to as S. patens),
Typha spp. (Typha angustifolia and/or Typha × glauca) and P. australis.
To document between- and within-plant phenology, field spectra were
collected from specific stands of each of the three plant communities
monthly in the summer of 2004 at Site 1, approximately biweekly at Site
2 in the summer of 2005 and on a single date in the fall of 2006 (Fig. 2,
Table 1). The selected stands were dense monocultures in order to
approximate species' endmember characteristics.

The spectrometer is equipped with a 1-meter long fiber optic sensor
with a 25°field of view. Spectraweremeasured by hand-positioning the
fiber optic sensor approximately at nadir within 1 meter of the species
canopy. Late in the growing season, theheightof Phragmitesprohibited a
nadir view and canopy spectra were measured at an oblique angle. The
canopy spectra may include background contributions fromwater, soil,
wrack and shade. Understory species were not observed at the target
stands. To minimize the effects of shade, spectra were measured
between 1000 and 1400h, except for 1 October 2005, where the tides
limited marsh access to the late afternoon (approximately 1600h). All
spectra were measured at or near low tide when there was no standing
water on the marsh. The relative contributions of photosynthetic and
non-photosynthetic vegetation to the spectra in these dense mono-
cultures changed throughout the growing season, where background
contributions to the FOV of the sensor were visually estimated to be
minimal when plant leaves were mature.

To better correlate the field spectra to satellite data, individual field
reflectance spectra were averaged over the four QuickBird band
intervals (Band 1 (blue): 450–520nm, Band 2 (green): 520–600nm,
Band 3 (red): 630–690nm and Band 4 (NIR): 760–900nm (Fig. 3) to
l spectral and structural information to map wetland vegetation in a
08), doi:10.1016/j.rse.2008.05.020
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Fig. 3. Example reflectance spectra of major plant species in Ragged Rock Creek marsh. Each spectrum is an average of ≥10 spectra. QuickBird band positions are indicated. Collection
sites indicated in Fig. 2c. Spectra of (a) Phragmites, (b) Typha spp., and (c) S. patens throughout the growing season. Key in figure (a) corresponds to figures (b) and (c). One standard
deviation of the averaged spectra is plotted for Phragmites on May 27, 2005 in (a) and is typical of the reflectance data shown in all panels. (d) Spectra of major marsh plant
communities on August 1, 2005. One standard deviation of the averaged spectra is plotted.

Table 2
QuickBird band ratios used for image segmentation

Image date Image weights

Band 2/
Band 1

Band 3/
Band 2

Band 4/
Band 3

Raw Bands
1, 2, 3, 4

LiDAR

17 June 2005 – – 0.5 – –

2 July 2004 0.5 0.5 – – –

20 July 2004 0 – – Bands 1, 2, 3=0.8 –

Band 4=1.0
13 August 2006 0.5 0.5 0.5 – –

12 September 2004 0.5 0.5 0.5 –

8 October 2004 – – – – 1.0

The values indicate the weights applied in eCognition™ during image segmentation.
The 20 July 2004 2:1 ratio is the only one to not have aweight of 0.5 due to the inclusion
of the raw QuickBird bands from this date.
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produce a simulated QuickBird band value. From these data, four
spectral indices were calculated and found to be most useful for
discrimination of plant species: green/blue, NIR/red, red/green, and
the Normalized Difference Vegetation Index (NDVI = (NIR − red)/(NIR +
red)). The values of these indices over the growing season comprise a
set of “radiometry rules” that were used to guide image segmentation
and classification. Vegetation indices were used for classification
instead of raw bands because they reduce data volume, provide
information not available in a single band (Coppin & Bauer, 1996), and
normalize differences in reflectance when using multiple images
(Singh, 1989) and comparing field and satellite data.

3.2. Collection of the validation set

A floristic inventory of the marsh was conducted throughout the
summer of 2006 to establish validation data for the image classifica-
tion. A set of 1000 randomly distributed point locations within the
marsh was generated using Hawth's Analysis Tools for ArcGIS (Beyer,
2004). At each location, 4m2 quadrats were placed and plant
Please cite this article as: Gilmore, M. S., et al., Integrating multi-tempora
lower Connecticut River tidal marsh, Remote Sensing of Environment (20
community composition and species abundance were recorded. GPS
field coordinates for the center of each sampling site were recorded
and differentially corrected. In total, 923 vegetation plots were
l spectral and structural information to map wetland vegetation in a
08), doi:10.1016/j.rse.2008.05.020
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Fig. 4. VNIR reflectance of Phragmites, Typha spp. and S. patens over the 2004–2006 growing season. Average accumulated growing degree days=(average daily temperature−50°F).
Field reflectance data recalculated as QuickBird (QB) bands: (a) NDVI, (b) Bands 4/3, (c) Bands 2/1, (d) Bands 3/2. Each point is an average of ≥10 fieldmeasurements; error bars are one
standard deviation. Dates of spectra acquisition are indicated in Table 1 where open symbols correspond to 2004 and closed symbols to 2005/6. Circled data points refer to dates
when spectral differences between the species were utilized to create classification rules for each species in available QuickBird images (indicated). Average reflectance values of
image segments in QuickBird data containing the field targets (see Fig. 2c), one standard deviation is plotted: (e) NDVI, (f) Bands 4/3, (g) Bands 2/1, (h) Bands 3/2. Image acquisition
dates are indicated in panel (e).
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recorded at Ragged Rock Creek; 877 were random plot locations and
46 were locations selected by the field teams as unusual, rare or
monotypic plant communities. The spectral reflectance collection sites
were included in the 923 plots. Some plots were revisited during the
growing season but only one data point was maintained for each plot
location resulting in a grand total of 917 field points. For the purposes
of accuracy assessment, all points were assigned to one of five
dominant classes: Phragmites, Typha spp., S. patens, Water, and Other/
mixed to correlate with the classification (Section 3.5).

3.3. Image and LiDAR processing

High-resolution (2.44-meter at nadir) QuickBird satellite image
data were acquired for a 100km2 area at the mouth of the Connecticut
River (Fig. 1) on 9 dates from July 2003 through November 2006
(Table 1). The data were re-projected into the UTM coordinate system,
WGS84 datum, zone 18, meters. Each image was co-registered to the
20 July 2004 QuickBird image to assure consistent alignment. Of the
nine scenes, five (Table 1, underlined) were selected for the final
classification based on image quality (i.e., lack of clouds and haze),
acquisition month and day and importance as determined by field
spectra data analysis. Although the images spanned several growing
seasons, the month and day of acquisition was considered more
important than the year of acquisition because the monthly spectral
variability was observed to be much greater than interannual
variability in the dataset.

Multiple return LiDAR data were collected on 8 October 2004 at an
altitude of 3000ft using a Leica ALS50 airborne laser scanner. Two
returns per pulse (first and last) were recorded. The LiDAR data points
had a nominal ground sampling distance of 0.9m and a reported
horizontal accuracy of 0.5m. Based on 22 points, the average error
between the bare earth LiDAR coverage and the control was 0.002m
with an RMSE of 0.057m. LiDAR non-ground data points for the
project area were re-projected to UTM Zone 18N, NAD83, meters and
were converted to a 2.4m resolution elevation grid using the Natural
Neighbors interpolator in the 3D Analyst Extension to ArcGIS. The
elevation grid was converted to an 8-bit unsigned integer format for
Please cite this article as: Gilmore, M. S., et al., Integrating multi-tempora
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use in the eCognition™ software. The elevation grid approximated the
top of the plant canopy within the study area.

3.4. Classification

Classificationwas conducted using the hierarchical object-oriented
image analysis software eCognition™ (Benz et al., 2004). Input data
(layers) consisted of QuickBird images comprised of single bands from
a single date, band ratio images on multiple dates (Table 2), and LiDAR
top of canopy information. Non-marsh features such as houses, trees
and lawns were eliminated from the input data. The input data were
segmented into image objects, which are contiguous pixels that are
grouped together into homogeneous polygon features. The advantage
of an object-oriented approach is that both spectral and spatial
parameters define an image object; this is in contrast to per-pixel
classifiers where each pixel is treated independently of all others,
including its neighbors. In this study, spectral and spatial parameters
(smoothness and compactness) were set to contribute 70% and 30%,
respectively, to the segment boundary definition. Each layer in the
eCognition™ project was weighted to determine its contribution to
the segmentation (Table 2). The relative size of each image object is
determined by a scale parameter, which sets the maximum allowed
heterogeneity between image objects. A scale parameter of 20 was
found to be the optimum size that best corresponded to the plant
communities within the Ragged Rock Creek marsh using QuickBird
data. The result is a segmented image consisting of objects, each of
which is treated as a single entity in the classification.

3.5. Accuracy assessment

Two-thirds of the field points from the floristic inventory (n = 613)
were used for accuracy assessment, but only those that were at a
distance greater than 2m (n = 379) from each class boundary were
used to ensure that the points were located within the class being
evaluated and that GPS inaccuracies and image registration errors
were not factors. The accuracy assessment used the fuzzy set approach
of Gopal and Woodcock (1994) which acknowledges the inherent
l spectral and structural information to map wetland vegetation in a
08), doi:10.1016/j.rse.2008.05.020
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Fig. 5. Histograms showing LiDAR height data for GPS field inventory plots where each
plant class is dominant.
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variation in vegetation communities by allowing for sites to exhibit
some grade of membership among map classes. For example, sites
may reasonably be members of multiple classes, or alternately, some
sites may only show a poor resemblance to any of the map classes.

The Gopal andWoodcock (1994) fuzzy accuracy assessmentmethod
uses a rating system of linguistic levels of increasing correctness,
labeled: (1) Absolutely Wrong, (2) Understandable but Wrong, (3) Rea-
sonable or Acceptable Answer, (4)GoodAnswer, and (5)Absolutely Correct.
Each field point in the validation set was assigned a linguistic value
between 1 and 5 corresponding tomembership in one of four classes:
Phragmites, Typha spp., S. patens, and Other/mixed. Ratings were
initially assigned based on a statistical method where the Euclidean
distances in ordination space to class centroids (Podani, 2000, ter
Braak and Šmilauer, 1998) were inversely translated into ordinal
ranks that related to the five linguistic levels. Additionally, “expert”
judgment was made, without knowledge of the map labels, to make
adjustments in linguistic fuzzy values for the conspicuous dom-
inance or absence of major species. The accuracy assessment was
completed by comparing the vegetation class rating of each
validation site to the QuickBird classification result.

4. Results

4.1. Phenology and structure of major species

The canopy reflectance spectra of each plant community were
broadly similar, including absorptions typical of healthy photosynthe-
sizing vascular plants (Fig. 3). At the beginning of the growing season,
each spectrum showed expected increases in the strength of the
absorptions at approximately 450nm and 680nm due to chlorophylls
and carotenoids within the leaves and an increase in NIR reflectance
due to leaf biomass (e.g., Wooley, 1971). This trend continued in each
species until the onset of senescence (Fig. 3a–c). Comparison of the
spectra of individual species showed that the magnitude and shape of
the spectra can differ qualitatively on individual dates (Fig. 3d).

To relate the spectral variability of the field data to QuickBird
images, the reflectance spectra of each species were reduced to
simulated QuickBird band ratios and plotted as a function of average
accumulated growing degree days (GDD50 = (average daily tempera-
ture − 50°F (10°C))) using temperature data records for the Groton,
Connecticut airport acquired by the National Climatic Data Center
(Fig. 4). Trends of NDVI and the NIR/red ratios were similar to each
other, where the NIR/red ratio provided greater separability amongst
the individual points (Fig. 4a,b). All species showed a rise in these
indices at approximately GDD50 400 (early June) corresponding with
the green-up phase of plant growth and a subsequent decline in the
indices corresponding to senescence. S. patens and Phragmites reached
peak values at ~ GDD50 ≥ 900 (mid-July) and Typha spp. at ~ GDD50

500 (mid- to late June). Typha spp. NDVI and NIR/red values were
generally higher than the other species near the time of their peak
while Phragmites values exceeded the other species in mid-August
through early September.

The seasonal pattern of the simulated QuickBird green/blue ratio of
S. patenswas unique (Fig. 4c). Values of this ratio were similar for each
species at the beginning of the season, but S. patens rose to a peak
value near GDD50 900 (mid-July). The absolute value of this ratio for S.
patens was twice that of Typha spp. and Phragmites from early June
through early August.

The general seasonal pattern of the simulated QuickBird red/green
ratio for all species showed an initial decline from approximately
GDD50 200 to GDD50 800 (late May–late June) and then an increase
(Fig. 4d). S. patens values in this index were lower than the other two
species over GDD50 400 to 1500 (mid-June–early August). Typha spp.
values exceeded those of the other species from mid-July onward.

Three simple band ratios were determined to be most useful in
identifying at least one major plant community: for Phragmites, the
Please cite this article as: Gilmore, M. S., et al., Integrating multi-tempora
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NIR/red ratio in late summer, for S. patens, the green/blue ratio in
midsummer, and for Typha spp., the red/green ratio in late summer
(circled points, Fig. 4). These periods showed both the greatest
spectral separability between individual species and the best
correspondence with the dates (month, day) of the QuickBird images
available for classification (Table 1; Fig. 4).

On the Ragged Rock Creek marsh, the average height of Phragmites
determined from the field survey points was 2.1m (n = 213), Typha
spp. points averaged 1.1m (n = 206) and S. patens points averaged 0.7m
(n = 160; Fig. 5). The LiDAR data generally agreed with field
observations of each species' growth habit in October.

4.2. QuickBird classification

Fig. 6 graphically illustrates the rules that were identified from the
field spectra and implemented in the classification of the QuickBird
images. QuickBird classification results are displayed in Fig. 7.
Qualitatively, the classification identified contiguous areas of Phrag-
mites, Typha spp., and S. patens. The classification confirmed that the
portion of Ragged Rock Creek marsh surveyed was dominated by the
three species under study, where classified Typha spp. and Phragmites,
comprised 36% (45.2 ha) and 24% (30.5 ha) respectively, S. patens
covered 22% (27.8ha), and other species covered 18% (22.9ha) of the
marsh.

The frequency of correct matches (and mismatches) for each map
class and the overall (total) map were calculated by using two fuzzy
accuracy measures, MAX and RIGHT (Table 3; all fuzzy measures are
derived fromGopal andWoodcock (1994)). TheMAX column indicates
the strictest measure of accuracy where only the highest membership
level (5) was acceptable; this is the closest measure to traditional
accuracy assessment (Congalton & Green, 1999). The RIGHT column
indicates an acceptable map label choice (a linguistic level of ≥ 3).
Phragmites had the highest accuracy with both MAX and RIGHT
values of 97%. Typha spp. was the least accurate with 63% MAX and
76% RIGHT. The S. patens meadows type was labeled correctly in most
cases with a MAX of 80% and RIGHT of 92%. The category Other/Mix
had aMAX value of 72% but a RIGHT value of 100%. In general, the total
weighted accuracy of all map labels adjusted for areal proportion of
each map class had a MAX rating of nearly 77% and an acceptable
RIGHT rating of nearly 89%.

The magnitude of errors measures the difference scored between
the map assigned linguistic level and the highest linguistic level given
in the field data (Table 4). A measure of 4 is the “perfect” case where
the mapped category is perfectly right (5) and all other categories are
perfectly wrong (1). An error difference of − 1 occurs when the map
label level is only one level away from the highest level of the field
data; errors may increase to a − 4. The arithmetic mean of these values
is interpreted as a summary measure inversely proportional to error
severity, hence larger mean values are indicative of a higher overall
quality of the map. Phragmites was the most reliably-mapped class
where 47 of the 68 points (69%) had perfectly correct assignments and
a high arithmetic mean of 2.97. S. patens had the second highest
l spectral and structural information to map wetland vegetation in a
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Fig. 6. Knowledge-based rules (in grey and black) implemented in eCognition™ for the classification of image objects. Each bar corresponds to one rule that was applied to an image
(right hand side) used to define each class (left hand side). The percentage (x axis) was calculated based on themaximum digital number (dn) for each image. For example, Phragmites
image objects were defined by having high values of the NIR/red ratio in the 12 September 2004 QuickBird image (~uppermost 75% of dn values in the image) and high values (1.1 to
4.0 m) in the LiDAR data. High values of the red/green band ratio in the 13 August 2006 QuickBird image andmiddle heights of LiDAR identified Typha spp. objects. High values of the
green/blue band ratio in the 20 July 2004 QuickBird image and low values of the LiDAR height data determined S. patens objects. Water was identified by low Band 4 values in the 20
July 2004 QuickBird image.
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arithmetic mean of 1.71. Typha spp. had a low arithmetic mean (0.77).
Typha spp. had the greatest spread of errors, including 19% of the total
in the − 4 category. The Other/Mix class had the lowest arithmetic
mean of 0.43 due primarily to the large numbers of equivalent class
assignments (as indicated by the proportion of values in the middle
range from − 1 to 1) and not due to errors of large magnitude.

Sources of error resulting from sites with multiple memberships
are presented in Table 5. Phragmites was the most correctly mapped
class, with a high frequency of single membership sites (49 of 68
points, 72%) that were correctly matched (100%). Just over half of the
Typha spp. points (85 points, 54%) had a single membership and of
these, most points were correctly matched. Typha spp. was the only
Fig. 7. (a) 20 July 2004 QuickBird 4-2-
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case where there were more mismatches than matches in the classes
with multiple memberships eroding the confidence of that map label.
By the very definition of fuzzy sets, correct mapswill have classes with
many multiple memberships, especially as was the case with the
Other/Mix class and the S. patens meadow. Just over half of the S.
patens points (47 points, 52%) had a single membership, and of these
almost 90% were classified correctly; 60% of the multiple membership
points were classified correctly. The majority of points in the Other/
Mix class had multiple memberships.

The categorical nature of errors i.e., pairwise error within and
between categories are summarized in Fuzzy Confusion and Fuzzy
Ambiguity matrices (Tables 6 and 7). The Fuzzy Confusion function,
1 image. (b) Classification result.
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Table 3
Frequency of correct matches for all map label categories based on two fuzzy operator
choices: best choice, MAX (M) where linguistic level=5 and acceptable choice RIGHT
(R), with a linguistic level ≥3

Map label Sites Technical evaluation of matches (ground data) Area
weights

MAX (M) RIGHT (R) Improvement (R–M)

Phragmites 68 66 (97.1%) 66 (97.1%) 0 (0.0%) 0.24130
Typha 157 99 (63.1%) 119 (75.8%) 20 (12.7%) 0.35783
S. patens 90 72 (80.0%) 83 (92.2%) 11 (12.2%) 0.21994
Other/Mix 64 46 (71.9%) 64 (100.0%) 18 (28.1%) 0.18093
Total 379 283 (74.7%) 332 (87.6%) 49 (12.4%) 1
Weighted total (76.5%) (88.8%) (12.3%)

The overall accuracy of allmap labels, i.e., the entiremap, is given as the total. Areaweights
were determined by the contributing areal proportion of the map label categories.

Table 5
Sources of error for map classes as a function of multiple memberships attaining an
acceptable level (linguistic level equal to 3 or better) at each site

Map label Sites Membership (χ)

1 2 3 4

T M N T M N T M N T M N

Phragmites 68 49 49 0 12 11 1 7 7 0 0 0 0
Typha 157 85 69 16 48 21 27 18 7 11 6 2 4
S. patens 90 47 42 5 36 25 11 6 4 2 1 1 0
Other/Mix 64 9 9 0 37 24 13 17 12 5 1 1 0
Total 379 190 169 21 133 81 52 48 30 18 8 4 4

Total numbers of sites (T) are further subdivided into correctly matched (M) and
mismatched sites (N). See text for discussion.

Table 4
Fuzzy difference matrix

Map label Sites Mismatches (ωc) Matches (ϖc) Arithmetic
mean

−4 −3 −2 −1 0 1 2 3 4

Phragmites 68 2 0 0 0 7 3 8 1 47 2.97
Typha 157 29 7 14 8 11 5 14 15 54 0.77
S. patens 90 3 4 5 6 12 7 11 3 39 1.71
Other/Mix 64 0 0 0 18 14 23 3 6 0 0.45
Total 379 34 11 19 32 44 38 36 25 140 1.34

The magnitude and severity of errors in the fuzzy assessment resulting from the
difference in linguistic membership value between the map label score and the highest
score assigned to all classes of the field data. Correctly mapped areas have zero and
positive values, where well-mapped areas have high positive scores. Negative values
coincide with map errors and large errors result in high negative scores. The arithmetic
mean summarizes the severity of the error and, hence, it is indicative of map quality.

Table 6
Fuzzy Confusion Matrix

Technical evaluation (ground data)

Phragmites Typha S.
patens

Other/
Mix

No. of
mismatches

Commission
errors

Map label Sites ζCC′ ζCC′ ζCC′ ζCC′ ζCC′

Phragmites 68 X 0 1 2 3 4%
Typha 157 29 X 30 42 101 64%
S. patens 90 2 2 X 17 21 33%
Other/Mix 64 3 6 9 X 18 28%
Total 379 34 8 40 61 143
Omission
errors

34% 5% 31% 49%

The Confusion function, ζCC′, identifies samples where the map label was not the
highest rating resulting in amismatch. The category with the highest rating is shown by
the technical evaluation assignment.

Table 7
Fuzzy Ambiguity Matrix

Technical evaluation (ground data)

Phragmites Typha S. patens Other/Mix No. of mismatches

Map label Sites ηCC′ ηCC′ ηCC′ ηCC′ ηCC′

Phragmites 68 X 4 0 7 11
Typha 157 2 X 5 11 18
S. patens 90 2 0 X 12 14
Other/Mix 64 4 5 8 X 17
Total 379 8 9 13 30 60

The Ambiguity function, ηCC′, identifies cases where the mapped category had the same
rating as another category. It was only applied to acceptable ratings (score of 3 or
better). See text for discussion.
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ζCC′, (Table 6) identifies mismatched sites, and is nearly equivalent to a
conventional confusion matrix of Congalton and Green (1999). The
map label column in the table identifies which map category was
assigned. Phragmites had the lowest number of commission errors.
Typha spp. has the highest number of commission errors and the
lowest number of omission errors, as Typha spp. comprised correctly
and incorrectly many of the mapped categories in the classification.

The Fuzzy Ambiguity function, ηCC′, (Table 7) identifies categories
with the same rating as the mapped category only when the ratings
were acceptable (linguistic level 3 or better). The off-diagonal values
aremismatched, but retain some degree of correctness. The Other/Mix
class was the most ambiguous, a testimony to its transitional nature.
The Other/Mix column contained a total of 30 sites that were
considered equivalent to the mapped category. Furthermore, Other/
Mix was also mapped as an equivalent in 17 sites categorized by
ground truth as something else. Phragmites was the least ambiguous.
It contained 4 sites equally rated with Typha spp. Typha spp. also
included 5 sites that had an equivalent rating with S. patens and 2 sites
with Phragmites. S. patens had 0 points with equivalent rating of Ty-
pha spp. The asymmetry in the matrix revealed that ambiguous points
between Typha spp. and S. patens would most likely be mapped as
Typha spp.

5. Discussion

5.1. Spectral characteristics of marsh species across the growing season

The spectral characteristics of vegetation are due to leaf pigments,
plant structure (e.g., biomass and canopy architecture and cover) and
plant health throughout the phenological cycle. Much of the spectral
variability in the field data can be attributed to expected increases in
plant pigments and biomass during the green-up phase of plant
growth, and the decline of these variables and the increased
contribution of background materials during senescence. The magni-
tude and rate of these changes is found to differ in individual species
allowing their spectral discrimination at specific times during the
growing season. The variability observed in individual reflectance
spectra measured in the field was replicated when these spectra were
resampled to QuickBird bands. Simple spectral indices were sufficient
to distinguish the three dominant plant communities within a mosaic
of other vegetation in Ragged Rock Creek marsh.

Many studies have shown a correlation between the near-infrared
reflectance of vegetation and biomass in general and in marsh species
in particular (e.g., Drake, 1976; Hardisky et al., 1984, Hardisky et al.,
1986; Gross et al., 1993; Zhang et al., 1997). We suggest this correlation
is apparent in the field data where Phragmites and Typha spp., which
often occur as monocultures, had higher NDVI and NIR/red values
throughout the growing season than the low-growing S. patens
(Figs. 4a, b, e). NIR index values peaked for Typha spp. in mid–late
June, corresponding to field observations of peak plant heights, full
development of flowers andwholly green leaves. Phragmites displayed
l spectral and structural information to map wetland vegetation in a
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Fig. 8. Vegetation community abundance determined by field observation compared
the best choice (fuzzy operatorMAX, Table 3) map classification label. Correctly mapped
species have a high number of matches.
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peak NIR index values inmid-August to early September correlating to
peak plant heights and the development of flowers. Moreover, by late
August, Typha spp. had senesced resulting in a reduction in green
biomass and likely an increase in the contribution of background
materials such as wrack or soil to its spectrum. These factors should
reduce NIR and increase the red values for Typha spp. relative to
Phragmites (e.g., Hardisky et al., 1984).

The green/blue ratio of S. patenswas dramatically higher than that
of Phragmites or Typha spp. from mid-June through late August
(Fig. 4c). We attribute this to inherent differences in the amount of
chlorophyll b and carotenoids in these species, both of which absorb
in the blue portion of the spectrum (Fig. 3). The peak in the green/blue
index for S. patens in mid-July corresponds to maximum pigment
concentration at this time of year.

Our field data generated the following set of spectral rules that
may be applicable to the discrimination of Phragmites, Typha spp. and
S. patens communities: 1) Phragmites is best distinguished by its high
NIR response late in the growing season, 2) Typha spp. is best
distinguished by high red/green response in August, and 3) S. patens is
best distinguished by a unique green/blue ratio throughout the
growing season. Our field data predict that seasonal spectral behavior
should be evident within actual QuickBird data. To demonstrate this,
we identified the image segments on 8 QuickBird images that
contained the sites where the field point spectra were measured in
2005 and 2006. Average band ratios for all pixels within each segment
were plotted in Fig. 4e–h. In the QuickBird data, Phragmites uniquely
displayed high NDVI and NIR/red values late in the growing season
(Fig. 4e,f), and S. patens had a relatively high green/blue values
throughout the growing season (Fig. 4g). The red/green values for
Typha (Fig. 4d) are greater than and separable from Phragmites
throughout the growing season, but overlapped with S. patens. Thus
simple indices in 4 band data such as QuickBird were adequate to
remotely measure and distinguish the spectral characteristics of these
species over the growing season.

The values of the QuickBird data spectral ratios for the field targets
over the growing season follow the patterns established in the field
data. This supports the use of field spectra for the training of image
classifiers as has been predicted by other studies (e.g., Silvestri et al.,
2002; Wang et al., 2007). As the QuickBird data were collected at
various times of day and tidal height, the correspondence between
field and satellite data suggests that the canopy spectra at the satellite
level was dominated by vegetation and the contribution of variable
background elements like water and shade was minimal. The field
targets were selected because they are monocultures with high areal
density, so we expected little to no contribution of understory species
in these data. Understory species may become an important part of
the canopy spectrum in less dense stands, which may reduce
classification accuracy (see Section 5.2).

The phenological trends seen here can vary as a function of plant
vigor, which may depend on changes in salinity, climate, predation or
disturbance. Corrections for interannual and regional changes in these
factors must therefore be performed when attempting to interpret
classification results or select dates to maximize interspecies spectral
discrimination. However, the spectral trends noted here may have
broader spatial and temporal application. We emphasize that in this
study, the phenological behavior of the spectral indices is consistent
over 3 years at two separate areas in both the field and satellite data of
Ragged Rock Creek marsh. Furthermore, other studies show similar
spectral behavior of wetland plant species. The late season peak in NIR
reflectance we observed in our data for Phragmites is also noted for
this species in VNIR field spectra measured in the New Jersey
Meadowlands (Artigas & Yang, 2005, 2006) and in the Yangtze
Estuary (Gao & Zhang, 2006). Phragmites is also found to be most
spectrally separable from Typha spp. in field VNIR spectra measured in
the Hudson River estuary in late August (Laba et al., 2005). These
studies suggest that the spectral variability utilized here may be
Please cite this article as: Gilmore, M. S., et al., Integrating multi-tempora
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applied to other areas, particularly if guided by any ecological
assessment of growth habits of marsh species locally.

5.2. Classification

The fuzzy accuracy assessment utilized two measures of accuracy
for each class: MAX (best) and RIGHT (correct). The highest MAX
accuracies were reported for validation points containing a single
species. Our classification approach was the most useful for
discriminating Phragmites, which occurred most often as monotypic
stands. Yet, the marsh mosaic also included another, and perhaps
more typical scenario, where several species are admixed in varying
amounts. Treating the validation points in this study with linguistic
values, fuzzy accuracy assessment and the RIGHT accuracy measure
enabled an arguably more realistic interpretation of vegetation stands
with co-dominant or transitional species typical of many marshes and
returned a higher accuracy than the MAX measure. Similar improve-
ments in accuracy between MAX and RIGHT measures have been
noted for the mapping of marsh vegetation using QuickBird imagery
(Laba et al., 2008) with eCognition™ (Yu et al., 2006).

Examination of points misclassified as S. patens included bare
ground/flotsam/wrack, which are all low-lying and spectrally bright
and other low-growing species such as blackgrass (Juncus gerardii),
bentgrass (Agrostis stolonifera) and switchgrass (Panicum virgatum).
Using the RIGHT accuracy measure improved results for S. patens,
which we suggest resulted from its distribution as understory in many
of the validation quadrats. In these situations, the spectral signature of
S. patens contributed to the signal even if fewer disperse, taller species
dominate the LiDAR first return (canopy) data.

Typha spp., the most overmapped class, was confused with
Phragmites and a number of species. Examination of the validation
data shows that the classification misidentified many points where
Typha spp. was recorded in low abundance (Fig. 8). These points
contain Typha spp., which occasionally has a diffuse clonal growth
habit, within a mix of species of various heights, spectral signatures
and densities. Many of these species, like Phragmites, are observed to
occur at similar heights (approximately 1–2m) to Typha spp. during
the middle part of the growing season, including sedges (Schenoplec-
tus species) and bulrushes (Bolboschoenus species). The wide range of
species that are confused with Typha spp. is likely exacerbated by its
lack of an extreme, defining spectral or height rule (Fig. 5). In contrast,
both Phragmites and S. patens have extremes in the LiDAR data (tallest
l spectral and structural information to map wetland vegetation in a
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and shortest, respectively) and have one band ratio that is quite
distinct (late season NIR/red and mid-season green/blue, respec-
tively). The fact that Typha spp. covers the largest area of the marsh
may also increase the potential for confusion and error.

Elevation information, such as that derived from LiDAR, is an
important feature of natural vegetation classification (Morris et al.,
2005; Rosso et al., 2006; Sadro et al., 2007; Yu et al., 2006). Phragmites
was observed to be approximately 1m taller than the next tallest species
in late summer. This characteristic distinguishes Phragmites from Typha
spp. and S. patens in the LiDAR data (Fig. 5), likely contributing to the
success of its classification.While it is possible that the use of LiDAR as a
sole discriminant could identify a large proportion of Phragmites
occurrences, the spectral characteristics are likely necessary to distin-
guish between Phragmites and Typha spp. because there is considerable
overlap in the height data of these species.

The accuracy of the classification methodology reported here is
comparable to that of a variety of supervised classifiers used to map
tidal marsh vegetation in QuickBird (Belluco et al., 2006; Laba et al.,
2008) and CASI images (Wang et al., 2007).

5.3. Implications for mapping of salt marsh vegetation

The canopy spectral and structural characteristics of Phragmites,
Typha spp. and S. patens vary as a function of plant phenology in
both field collected spectra and QuickBird images (Fig. 4). The plant
communities were found to be spectrally separable in 4 band data and
thus we predict that other four-band image systems could be used for
marsh plant classification, obviating the need for hyperspectral
airborne data (e.g., AVIRIS or CASI). The high spatial resolution of
QuickBird images likely contributed to the success of the classifica-
tion; we would expect classification accuracy to degrade with lower
spatial resolution data (e.g., Landsat) as has been noted in other
attempts to classify salt marsh vegetation (Belluco et al., 2006).

The seasonal variations in spectral behaviormake clear the necessity
of multi-temporal imagery for mapping multiple species on a complex
tidal marsh. Our study demonstrates that field observations at a limited
number of reference sites were sufficient for classification. The spectral
and structural data predicted times during the growing season when
each species was best discriminated.With this knowledge, a single date
of imagery could be used to adequately map a single species. For
example, in Ragged Rock Creekmarsh, the highNIR response and height
of Phragmites in the autumndistinguishes it uniquely among amosaic of
plant species typical of a brackish marsh. Natural resource land
managers seeking to monitor Phragmites in this region could utilize
single date color infrared images (satellite or aerial) and/or LiDAR during
late August to early September for Phragmites identification. Classifica-
tion could be accomplished at othermarsheswithfield observations at a
limited number of reference sites.

6. Conclusion

This study presents a new technique for the classification of major
marsh plant species within a complex, heterogeneous tidalmarsh using
multi-temporal QuickBird images, field reflectance spectra and LiDAR
height information. Analyses of the phenological variation of spectral
and structural characteristics of marsh species measured in the field
throughout the growing season were necessary to select the best dates
to discriminate Phragmites, Typha spp. and S. patens. These three species
are spectrally distinguishable at particular times of year. These
distinctions are recognizable both in high-resolution field spectra, in
the spectra when degraded to spectral resolution typical of 4 band
multispectral sensors, and in QuickBird images of the field sites.

Rules based on the spectral variability of species throughout the
growing season were used to direct the classification of multi-
temporal QuickBird images. Mapping accuracies were best measured
for all species by using a fuzzy accuracy assessment, which
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accommodates the complex mosaic of dominant and mixed plant
communities of Ragged Rock Creekmarsh. Classification accuracies for
Phragmites were high due to the high NIR reflectance and height of
this dense monoculture in the early fall. For classification, the spectral
data supplements the LiDAR data as it may include contributions from
understory species like S. patens.

The results of this study demonstrate the utility of remote sensing
to map certain types of marsh vegetation. Although multi-temporal
image data were utilized for the classification in this study, the
phenological variations recognized here can be utilized for judicious
selection and analysis of single date, four-band satellite or aerial image
data of coastal marshes along Long Island Sound. Such data are likely
to be useful to coastal managers and may greatly facilitate the
identification and inventory of marsh species.
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