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Abstract

We have developed two automated detectors that can recognize the sulfate mineral jarosite in unknown visible to near-infrared spectra (350-
2500 nm). The two detectors are optimized for use within the terrestrial and martian atmospheres. The detectors are built from Support Vector
Machines trained using a generative model to create linear mixtures of library mineral spectra. Both detectors performed with an average ~90%
accuracy on laboratory spectra of single minerals and the laboratory and field spectra of rocks collected in a hydrothermal environment. This type
of algorithm will contribute to the efficiency of onboard data analysis of landed and orbital visible/near-infrared spectrometers at Mars.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Data return from planetary missions is fundamentally con-
strained by (1) bandwidth constraints on the downlink chan-
nel, (2) limited interaction with Earth, (3) the limited storage
and computing resources on a spacecraft, and (4) finite instru-
ment lifetime. As a consequence, more data can be collected
during a mission than can be returned to Earth. These limi-
tations require that all data are triaged on planetary missions,
where highest priority data may be downlinked firstly and/or
with minimal compression and lowest priority data may not be
collected or returned at all. For example, the Mars Exploration
Rovers (MER) collect substantially more images for navigation
than can be downlinked. While compressed thumbnails may
be downloaded to assess if the full image should be transmit-
ted, a new approach to increase the mission science return is to
collect more images and prioritize data onboard according to
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criteria determined by the science team. This has been demon-
strated on the MER mission with the onboard detection of
dust devils and clouds (Castaio, 2006a, 2006; Schenker, 2006;
Bornstein et al., 2007). These events are typically rare, thus
the number of phenomena contained in the data set for the
same downlink allocation can be increased by monitoring over
a greater time period and selectively transmitting data contain-
ing the features of high interest.

Future rovers at Mars that utilize a variety of remote sens-
ing instruments over long periods of time (years) may traverse
many 10s of kilometers during the mission lifetime. The science
return of future robotic missions to Mars can be enhanced by
automating routine processing tasks, including the recognition
of high priority data within the entire collected set. In tradi-
tional terrestrial field geology and during the MER missions,
interesting features that provide critical clues to the history of
the surface may be found in localized patches. For example,
in the Columbia Hills, the Paso Robles soil is a unique local-
ized material interpreted due to its mineralogy to be an acidic
evaporite deposit (Ming et al., 2006; Morris et al., 2006); clay
minerals may be limited to rocks at Wooly Patch (Wang et
al., 2006). The hydrous mineral jarosite measured at Meridiani
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Planum (Klingelhofer et al., 2004) is contained within meter-
scale outcrops and has not yet been confirmed from orbit. The
capability to identify these types of features onboard rovers,
in particular during extended traverses, will ensure that signif-
icant discoveries are not overlooked. It is critical that future
rovers be able to detect high priority targets such as minerals
formed in the presence of water, unusual materials, or system-
atic changes in materials that may correspond to a geologic
contact. Autonomous systems can also increase opportunistic
science discoveries by collecting and analyzing data that would
not otherwise be scheduled (e.g., data collection during a rover
traverse), and in exploratory data analysis, where rapid feed-
back may enhance discovery potential (e.g., recognition of a
high priority target that would alter a command sequence such
as collecting more data or changing the rover path).

Spectroscopy is a primary tool for the identification of the
mineralogy of Mars. Here we develop onboard intelligence
sufficient to autonomously recognize geologically important
minerals within spectrometer measurements of soil and rock
samples, and thus to guide the selection, measurement and re-
turn of these data from Mars. In this investigation, we utilize
the visible to near-infrared (VNIR, 350-2500 nm) portion of
the spectrum as both the instrumentation and extensive spec-
tral libraries are available. Iron-bearing minerals, clays, sulfates
and carbonates have distinct absorptions in this region of the
spectrum and have been recognized on Mars (where present)
by the ISM instrument on Phobos 2 (Mustard et al., 1993;
Mustard and Sunshine, 1995), the IRS instrument on Mariner
6/7 (Herr et al., 1972; Calvin et al., 1994), the OMEGA instru-
ment on Mars Express (Bibring et al., 2005), and the CRISM
instrument on the Mars Reconnaissance Orbiter (Mustard et al.,
2007). The usefulness of VNIR reflectance point spectrometers
for mineralogy and geologic interpretation has been demon-
strated by rover field tests (Jolliff et al., 2002; Johnson et al.,
2001; Gazis and Roush, 2001). The Imager for Mars Pathfinder
(IMP) and Panoramic Camera (Pancam) instruments, with 15
(IMP) and 13 (Pancam) filters operating over the range ~440-
1000 nm (Smith et al., 1997; Bell et al., 2003), have classified
materials based on their ferrous and ferric mineralogy at the
Pathfinder and MER sites, respectively (Bell et al., 2000, 2004;
Farrand et al., 2006). We anticipate that future Mars rovers will
be equipped with high spectral resolution (10-100s channels)
VNIR spectrometers. While the software described here is spe-
cific to high-resolution VNIR spectra over the 350-2500 nm
range, the methods described here may be applied to other spec-
tral data sets (e.g., thermal emission) if sufficient laboratory,
field, and library spectra are available.

Spectral classification has been approached using a number
of methodologies, including rule-based expert systems (Gazis
and Roush, 2001; Clark et al., 2003), Bayes nets (Ramsey et
al., 2002) and artificial neural networks (Gilmore et al., 2000;
Bornstein et al., 2005). Rule-based systems such as Tetracorder
(Clark et al., 2003) are capable of detecting many minerals in
a single mixed spectrum, but are computationally intensive and
require significant input from the user to maximize the result.
To reduce computation time and increase portability, we em-
ploy an approach where we seek to identify specific mineral

compositions within unknown spectra. This is accomplished
by employing Support Vector Machines (SVMs), a supervised
classification algorithm. Using known mineral spectra, each
classifier is trained to recognize the spectral characteristics of a
geologically important mineral or mineral subclass. For Mars,
these are minerals associated with the presence of water. In this
work, we report on the development of an algorithm to detect
the sulfate mineral jarosite ((K, Na, H30)Fe3(SO4)2(OH)g) in
visible—near infrared (VNIR) spectra; this hydrous mineral has
been measured within outcrops on Meridiani Planum by the
Mars Exploration Rover (MER) Opportunity (Klingelhofer et
al., 2004).

2. The jarosite detector
2.1. Support Vector Machines

Support Vector Machines (SVMs) are a family of classifiers
that attempt to identify the optimal decision boundary that sep-
arates input data into two classes after application of a kernel
function to each datum (DeCoste and Mazzoni, 2003). The de-
cision boundary is computed empirically, where the SVM is
trained on a set of positive and negative examples, in this case,
VNIR spectra of minerals. The SVM output is the sum of dot
products of support vectors and reflectance values adjusted by a
constant. Since supervised machine learning classifiers enable
minerals of interest to be targeted directly and since classifiers,
by design, create an internal representation to summarize their
training data (spectra), they reduce computation requirements
making them suitable for onboard classification and downlink
prioritization. For instance, as part of the Autonomous Science-
craft Experiment, a SVM onboard the Earth Observing One
(EO-1) spacecraft identifies transient events of the cryosphere
such as the freezing and thawing of lakes (Chien et al., 2005;
Castario et al., 2006b).

A primary disadvantage of Support Vector Machines is that
the time to classify points is proportional to the number of
support vectors, which for complicated problems can be as
large as the number of training examples. Since we wanted
to train on thousands of examples, this would result in un-
reasonably slow classification. To minimize the computation
time required to classify new spectra, we restricted the de-
sign of our detectors to linear kernel SVMs. We used a cross-
validated testing approach to evaluate several elaborate and
computationally expensive kernels but none showed an appre-
ciable loss in classification accuracy compared to linear ker-
nels.

2.2. Generative learning model

A potential drawback of many types of supervised machine
learning algorithms is that large numbers of training examples
are often required for the classifier to converge (learn). During
the construction of our Artificial Neural Network (ANN) car-
bonate detector (Gilmore et al., 2000; Bornstein et al., 2005)
we found that tens of spectra were insufficient to train the ANN
to predict the presence or absence of mineral endmembers. This
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presented a problem since collecting only a few dozen samples
often requires days of fieldwork followed by petrographic or
geochemical measurements to verify the modal mineralogy of
each sample. While it is possible to use spectral libraries to al-
leviate the labor burden of sample collection and analysis, for
our purposes, spectral libraries have two drawbacks: (1) they
often contain ten or fewer spectra per sample and (2) the spec-
trum is usually measured in the laboratory, which yields data of
generally pure endmember minerals that are not representative
of typical rocks in the field. For an SVM detector to perform
well on field-collected spectra, it must be trained on field data
or data with similar variability.

In an effort to inexpensively obtain spectral data with many
of the characteristics of field data, we have begun to develop
a generative model for input spectra. The model starts with
a database populated from two well-known spectral libraries:
JPL’s Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) library (Hooke, S., 2000. The JPL
ASTER Spectral Library v1.1, http://speclib.jpl.nasa.gov) and
the US Geological Survey’s (USGS) Speclib04 (Clark et al.,
1993). To this database we define virtual rocks, defined as
containing one or more constituent minerals in specific per-
centages or percentage ranges constrained by terrestrial and
martian petrology (Table 1; Fig. 1). Within the defined ranges,
all percentages are chosen using a uniform pseudorandom num-

Table 1
Example rock classification input into the generative model

Virtual rock: Basalt

Essential minerals Accessory minerals

171

ber generator. For each virtual rock description, we classify
constituent minerals as essential, accessory, or accidental. Es-
sential minerals are required to occur in a rock at the percentage
(or within the range of percentages) specified. Accessory min-
erals may occur in the virtual rock type are added to a rock
if the chosen percentages for essential minerals do not sum to
100. Finally, accidental minerals that rarely occur in the vir-
tual rock type are added to rocks with low probability (usually
<10% of the rocks generated). The compositions of the virtual
rocks were selected to represent rocks known (from martian
meteorites and orbital spectroscopy) and predicted to occur on
Mars. This includes basic volcanic rocks (i.e., basalts) and their
weathering products that likely comprise the majority of the
surface, as well as minerals of interest at Mars (minerals asso-
ciated with water such as carbonates and evaporates; Table 2).
The classification of minerals as essential, accessory, or acci-
dental and their percentages are constrained to be geologically
reasonable.

To generate spectra for each virtual rock, we take the rock’s
constituent mineral spectra and corresponding percentages and
apply a mixing model. In this study, we applied a linear mix-
ing model. Let r(m, b) be the reflectance for endmember m at
bandwidth b. Then, given the mix percentage for each endmem-
ber w,,, the mixed reflectance for band b, Ry, is:

Rb=2wmr(m,b). (1)

Table 2
Minerals included in the “non-jarosite” class while training the SVM detector

Class

Minerals

Martian igneous and weathering

Augite, chromite, clinochlore,

Name Mineral in rock (%) Name Mineral in rock (%) products kaolinite, montmorillonite, olivine,
Labradorite 40-55 Hematite 1-10 pigeonite, siderite, talc
Augite 31-45 Magnetite 1-10 Minerals often associated with jarosite Alunite, anhydrite, epsomite,
Olivine 0-20 Ilmenite 1-10 ferrihydrite, goethite, gypsum,
Quartz 1-10 hematite, lepidocrosite, magnetite
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Fig. 1. Spectra produced using the generative model. (a) Example of synthetic basalt spectrum (bold) generated according to the guidelines in Table 1. The basalt
spectrum comprises 47% labradorite, 37% augite, 4% each of hematite, magnetite, olivine, 3% quartz and 2% ilmenite. Gaussian noise (2%) is also added to the
spectrum. Spectra of constituent endmember minerals are from the USGS Speclib04 (Clark et al., 1993): augite NMNH120049, hematite 2% + 98% Qtz GDS76,
ilmentite HS231.3B, labrardorite HS105.3B, magnetite HS195.3B, olivine NMNH137044.a 160 pm, quartz HS117.3B averturine. Example synthetic rock spectra
input into the generative model, (b) 500-1350 nm, (c) 2050-2380 nm. Spectra are single, double, ternary and quaternary linear mixtures of the endmembers listed
in Table 2. Example training spectra that are labeled as jarosite are in bold.
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Thus, under the linear mixing model, mixed reflectances are
simply weighted linear combinations of endmember spectra.
Recall, however, the spectra are drawn from spectral libraries,
which contain predominately laboratory spectra. To simulate
instrument and other noise encountered when taking field mea-
surements, we add pseudorandom Gaussian noise with mean
zero and variance o':

Rp= wyr(m,b)+ N[0,5]. )

While such a mixing model is simplistic, it has allowed us to
create and test our generative model framework and it can pro-
vide a wealth of spectra with many subtle variations to train
SVMs and other machine learning techniques. We are currently
developing a set of richer, nonlinear mixing models based on
the reflectance and refraction models of Hapke (1993).

2.3. Detector construction

To reduce computation time, the detector input is limited to
those regions of the VNIR spectrum that contain characteristic
absorption features of jarosite: a steep slope from 350-700 nm
which is the edge of a charge transfer band, ferric crystal field
transition bands at 430 nm and ~930 nm, and bound water
vibration bands at ~1470, 1850, 2250, 2270 and 2500 nm
(Hunt et al., 1971; Rossman, 1976; Hunt and Ashley, 1979;
Clark et al., 1990; Morris et al., 1996; Bishop and Murad, 2005;
Cloutis et al., 2006) (Fig. 2). The sharp 430 nm band present in
the spectra of jarosite and several other ferric sulfates (e.g.,
Rossman, 1976; Cloutis et al., 2006), is lost in the noise
in some of our field spectra and thus omitted in this ver-
sion of the detector. Schwertmannite is unique among ferric
sulfates in that is shares both the 430 and ~920 nm bands
with jarosite, however, the spectra differ significantly in the
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Fig. 2. Input intervals for the SVM jarosite detectors as well as jarosite band
assignments and locations. Laboratory spectrum of jarosite collected at Sulfur
Springs.

near-infrared region (Bishop and Murad, 1996). Ferric ox-
ides such as goethite and hematite and ferrous minerals such
as olivine exhibit absorptions in the 800—1000 nm range, but
are distinguishable from jarosite in the near infrared, likewise
some layer silicates (e.g., chlorite, muscovite) and carbon-
ates (e.g., calcite) have absorptions ~2270 nm but are dis-
tinct from jarosite in the visible (Hunt and Salisbury, 1970;
Gaffey, 1987). Nontronite exhibits bands at ~450, ~900 and
~2290 nm which are similar to jarosite and may cause con-
fusion between the two minerals, however nontronite has ad-
ditional bands at ~640, ~1420, ~1900 and ~2200 nm that
are lacking in the jarosite spectrum (Sherman and Vergo, 1988;
Clark et al., 1990; Bishop et al., 2002). We sought to avoid
noise in the spectra due to atmospheric water vapor at 1400
and 1900 nm that would be encountered during field tests.
Based on these constraints, we selected two spectral inter-
vals over which the detector operates: 500-1350 and 2050-
2380 nm. Compositional variability in jarosite (natrojarosite
NaFe3(S04)2(OH)g, plumbojarosite PbFe3(SO4)4(OH)12, hy-
dronium jarosite (H30)Fe3(SO4)2(OH)g) are found to have
minimal differences (<~30 nm) on the position of the ~930 nm
band minimum (Krenn et al., 2001; Bishop and Murad, 2005;
Cloutis et al., 2006), and thus the detector should apply to these
endmembers and their solid solutions.

The generative model was used to create linear mixtures of
spectral library data for SVM training (Fig. 1). Nine different
jarosite spectra representing the K, Na and H3O varieties of
the mineral from the United States Geologic Survey (USGS)
Speclib04 database were introduced to the detector for training
purposes. Training spectra for the non-jarosite class includes
minerals that are often found in the presence of jarosite (Ta-
ble 2). In total 100 spectra were created to train the SVM.
Of these, 54 were jarosites and 46 were non-jarosite with the
latter group comprised of equal amounts of pure endmember,
binary, tertiary and quaternary linear mixtures included in per-
centages defined by the generative model. All library spectra
were smoothed to a spectral resolution of 10 nm to ensure a
consistent training set.

Upon completion of the original detector, an additional de-
tector was created with inputs tailored to avoid spectral absorp-
tions expected in the martian atmosphere. The atmosphere of
Mars contains 95% CO,, 0.13% O, 0.07% CO and 0.03%
H>O (Owen, 1992), resulting in characteristic absorptions in
the VNIR (Owen, 1992; Bell et al., 1994). The presence of
CO; bands at 2052, 2114 and 2150 nm, CO bands at 2331 and
2357 nm and an H,O band at 1330 nm limits the input ranges
of the Mars-based detector to 500-1260 and 2185-2310 nm
(Fig. 2). Separate empirically-derived classification boundaries
for the Mars-based and Earth-based detectors result in two dif-
ferent ranges of output values.

2.4. Detector testing

After training, the detector was tested on laboratory and field
spectra of a variety of natural samples of rocks and miner-
als (Table 3, Figs. 3-5). Spectra were collected with an ASD
FieldSpec® FR operating over a total range of 350-2500 nm.
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Table 3
Minerals used for jarosite detector testing. A detector output > zero corresponds to a positive identification of jarosite. Incorrect detections are indicated in boldface

type
Sample Dominant minerals, mode where determined Band depth Detector score  Notes

Catalog/ Vis/NIR XRD SEM/EDS 923 nm 2267 nm Earth  Mars
hand sample

Peoples Museum (catalog #)

1. Biotite 100% Bi Bi 0.25 0.16 —1.53 —1.80 Crystalline
2. Clinochlore (#4134)  100% Cl Cl 0.15 0.24 —1.43 —1.45 Crystalline;
West Chester, PA

3. Kaolinite 1 100% Ka Ka 0.01 0.01 —2.89 —4.09 Crystalline

4. Kaolinite 2 Ka Ka 0.01 0.21 —-1.55 —-1.79

5. Muscovite 100% Mu Mu 0.08 0.01 —-1.39 —1.73  Crystalline

6.  Phlogopite 100% Phl Phl? 0.18 0.15 —0.99 —148 Crystalline

7. Talc 100% Ta Ta 0.19 0.22 —2.11 —1.63  Crystalline

8. Montmorillonite Mo 0.05 0.00 -231 =272

9. Nontronite (#14138) No No 0.15 0.10 —0.42 0.20  Crystalline and

massive; Conklin
Quarry, Lincoln,

RI
10.  Gypsum 100% Gy Gy 0.06 0.09 —0.07 —0.19 Crystalline
11.  Halite (#11442) 100% Ha Ha 0.01 0.01 —2.49 -3.36 Single crystal;
Detroit, MI
12.  Sylvite 100% Sy No library spectrum 0.02 0.01 —0.45 0.02
13.  Alunite (#4358) 100% Al Al 0.00 0.00 —1.01 —2.64 Crystalline;
Muzay, Hungary
14.  Jarosite (#12300) Ja Ja Ja 0.52 0.38 0.94 0.60  Crystalline and
coatings;
Swansea Mine,
Tintic Utah
15.  Barite (#8308) 100% Ba Npi 0.00 0.01 —1.87 —2.63 Crystalline;
Cheshire, CT
16.  Magnesite (#2154) 100% Ma Ma 0.00 0.10 —1.76 —3.09 Crystalline
17.  Siderite 1 (#4466) Si Si? 0.10 0.01 —1.36 —1.97 Crystalline
18.  Siderite 2 (#8668) Si Si? 0.08 0.03 —1.47 —1.74 Crystalline
19. Hematite 1 (#22) He He 0.27 0.03 —1.66 —2.14 Red
20. Hematite 2 100% He He 0.35 0.03 —1.63 —1.52  Semi-specular
31.  Goethite (#13935) 100% Go Go 0.25 0.03 —1.13 —1.31 Crystalline
22.  Sulfur 100% Su Su 0.00 0.03 —2.64 —4.27 Crystalline
23.  jml Ja, Ba Ja Ja 0.53 0.43 1.20 0.89
24,  jm2 Ja, Ba Ja Ja 0.54 0.40 0.62 0.15
25. jjl Ja Ja 0.70 0.59 2.35 2.25
26. 2 Ja Ja 0.68 0.58 0.50 0.00
27. ji3 Ja Ja 0.57 0.46 035 —0.05
27, jj4 Ja Ja 0.55 0.44 1.25 1.11
29. ji5 Ja Ja 0.52 0.43 0.84 0.59
30. Barite Ba Npi 0.01 0.01 —-1.55 -2.00
St. Lucia samples, spectra collected in lab
31. CH2b Phy 0.00 0.04 —1.84 -3.00
32.  White vein rock Al, Gy? 0.00 0.01 —1.14 -2.99
33.  IMT-1 Ja, Al, Phy Al Qu 0.15 0.06 -091 -1.34
34.  IMT-lor Ja, AL, Gy Ja, Al, Gy, 28% Ja, Al,  0.40 0.15 1.04 1.67
Qu Gy
35. IMT-2 Ka, Py, No? 0.07 0.00 —-1.85 —2.33
36. IMT-3a Ka 0.01 0.03 —-0.60 —1.54
37. IMT-3b Ja, Go, Al Ja, FeOx, 0.25 0.11 0.11 0.30
S, Qu
38. CHI Go, Ja, Al Go, Qu Al Ja, S, 0.37 0.07 0.15 0.52
FeOx, Qu
39. CH3 Phy? 0.00 0.01 —-0.83 —1.82
40. CH4 Phy? 0.00 0.01 —-0.57 —1.87
41. CHS5 Phy, S, Al? Qu 0.00 0.05 -0.07 —-1.39
42. CH6 Go Su, Pyr, 0.40 0.01 —0.68 —0.44
Org

(continued on next page)
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Table 3 (continued)
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Sample Dominant minerals, mode where determined Band depth Detector score Notes
Catalog/ Vis/NIR XRD SEM/EDS 923nm  2267nm  Earth  Mars
hand sample

43.  CH6w Al Qu, Su 0.03 0.02 —-1.02 =230
44. Ml Py, Ka? 0.15 0.03 —-1.27 —1.69  Dacite
45. M3 Py, Ka? 0.13 0.01 —1.09 —147 Dacite
46. b/t hottest pools Phy 0.01 0.04 —148 =249
47.  Ex-wall GC Phy 0.01 0.00 —-1.23  -3.30
48.  Ex-wall GCg Al 0.09 0.04 —-2.06 —2.70
49, In situ rock No. SP-1 Al, Phy 0.08 0.05 —1.07 -—-147
50.  Insitu rock No. SP-1w Al, Phy 0.01 0.07 1.87 1.24
51. Jarosite rockd Go, Al Go, Qu FeOx, Qu 0.39 0.01 -091 —-0.64
52.  S13Y Ja, Al, Al Qu, 0.44 0.08 0.96 2.52
20% Ja,
Gy, Ru
53.  SI3W Al Qu, Al, Ja? 0.00 0.00 —1.66 —2.85
54.  SI3WY Al 0.04 0.00 —-0.28 —0.53
55.  S1 Al, Phy 0.01 0.04 -1.17 -1.76
56.  S2W Phy, Al? 0.00 0.03 —-1.76  —3.08
57.  S20 Ja, Al 0.46 0.21 1.56 2.41
58.  S2Y Ja, Al 0.12 0.07 —-0.19 —-0.92
59.  S3p Phy 0.00 0.10 024 —0.62  Dacite
60. S30 Ja. Phy 0.46 0.24 1.16 1.84
61. S3G Py, Phy 0.05 0.02 —-1.65 -2.19
62.  S40 Gy Ja, Gy, Al Al Ja 49% Ja, Al,  0.50 0.20 0.71 1.22
Gy, Qu
63. S4W Gy Gy, Al, Phy  Qu, Phy 0.00 0.00 —-1.57 -2.09
64.  S4bO Gy Ja, Gy, Al 0.56 0.23 0.94 1.90
65.  S4xtals Gy Gy 0.06 0.13 —0.45 —0.53  Single crystals
66.  S6P Qu ? 0.00 0.03 —-0.53 —1.61
67.  S60 Qu Ja, Al 0.35 0.02 1.35 2.98
68. S7 Mo 0.04 0.00 —-1.85 —2.43
69. S8B Su Su, Phy 0.01 0.01 -1.27 -1.70
70.  S8Y Su Su 0.02 0.00 —0.78 —1.46
71.  S90 Go, Phy FeOx, Si 0.57 0.00 —0.87 —0.24
72.  S9(2)0 Go, Phy FeOx, Si 0.55 0.00 —0.58 0.67
73.  S100T Ja, Phy Qu, Go, Ja, FeOx, Ja?, 0.32 0.06 0.26 0.62
Al S, Qu
74.  S100 Go, Phy 0.40 0.01 —0.06 0.58
75.  S11GrY Ja, Al, Phy Ja, AL, Qu 0.26 0.18 0.35 0.27  Dacite
76.  S11Y Ja 0.35 0.26 0.91 0.81
77.  S11BG Phy 0.01 0.00 —-1.63 —-2.24
78.  SI12P Gy Gy, Qu Gy, Al, Qu 0.00 0.05 0.99 0.72
79.  SI12PW Phy 0.00 0.00 —-0.01 —0.28
80. ST-HEMI Phy 0.02 0.00 —-1.02 -1.18
81. ST-HEM3 Phy 0.01 0.00 —-0.53  —0.57
82. ST-HEM4 Phy 0.01 0.02 —-0.77 -—1.35
83.  ST-HEMS Phy 0.01 0.01 —-0.64 —0.77
84.  ST-7a0C-Y Ja, Al Ja, AL, Gy 31% Ja, Al,  0.55 0.25 1.92 3.21
Qu, Fel
85.  ST7a0C-W Al 0.03 0.01 -1.11 -—1.81
86. ST-D-D Phy 0.05 0.02 —-1.12  —1.59
87. ST-D-Y Ka 0.00 0.00 —-126 -2.82
88. ST-D-W Ka 0.00 0.00 —-1.60 —3.02
89.  ST7aDP-DP Al, Phy 0.02 0.03 —-1.49 -3.04
90.  ST7aDP-Y Al Su 0.00 0.00 —-1.20 -3.00
91.  ST7aDP-W Al 0.00 0.00 —-230 —4.02
92.  WCGR-W Phy 0.00 0.07 —0.81 —2.78
93.  ST7aLP-P Phy 0.00 0.03 —2.86 —4.54
94.  ST7aLP-Gr Algae Org, Phy 0.00 0.03 —0.89 —3.66
95.  St71LP-W Org, Phy 0.01 0.02 —2.34 295
96. OWR-D Go, Ka 0.50 0.00 —-1.02 —-0.76
97. OWR-W Ka 0.04 0.00 —-1.16 —1.33
98.  OWR-O Go, Ka 0.09 0.00 0.05 0.89
99. DC-P Go, Phy 0.09 0.05 —-122 -1.83
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Sample Dominant minerals, mode where determined Band depth Detector score Notes
Catalog/ Vis/NIR XRD SEM/EDS 923nm  2267nm  Earth  Mars
hand sample

100.  DC-Pk Phy 0.02 0.07 0.10 -—047

St. Lucia samples, XRD powders

101. GCorPre-powder Ja, Ka Ja, Al, Qu, 19% Ja, 0.31 0.14 —0.05 0.45

Ka Pyr, Qu
102.  ST7a-or-x Ja, Al Ja, Al, Gy?  Ja, Al Qu, 0.34 0.16 1.30 1.57
Fel
103.  Sllor-x Ja, Al Ja, Al, Qu 0.28 0.17 0.76 0.47
104.  S4dor-x Ja, Al Al, Ja, 49% Ja, Al,  0.39 0.17 1.24 1.53
Gy, Qu
Al Ja, Qu, Gy

105.  S4yell-x Ja, Al, Gy 0.13 0.05 -1.63 -254

106.  S4white-x Ka Qu, Phy 0.00 0.00 —-2.79 —4.31

107.  S12pink-x Gy Gy, Qu Gy, Al 0.00 0.03 —-0.75 -2.20

108.  S13white-x Al Qu, Al,Ja? Al Qu, Ja, 0.00 0.00 —-3.05 =521

Gy
109.  S10 Go Qu, Go, Ja,  FeOx, Ja, 0.45 0.01 —-0.51 —-0.36
Al S, Qu
110.  GCor-x Ja, Ka Ja, Al, Qu, 19% Ja, 0.14 0.05 —-091 -1.50
Ka Pyr, Qu

St. Lucia field targets®

111.  Drk green precip Algae Org 0.01 0.01 —-0.34 —1.84

112.  Yell precip Ja 0.41 0.19 1.25 2.41

113.  White earthy precip Al 0.01 0.01 —-1.01 —1.55

114.  More white stuff Al 0.00 0.01 —-1.10 —-1.59

115.  Pale earthy red-brown Al, Gy 0.07 0.02 —1.02 —1.43

116.  Pale greyish green Gy. Su 0.13 0.01 -1.59 -1.73

117.  Sulfur Su Su 0.03 0.01 —2.56 —4.36

118.  SulfurT Su Su 0.09 0.00 —2.17 =292

119. CH1 Ja, Go Go, Qu FeOx, Su, 0.46 0.07 —-0.65 —-0.20

Al, Ja, Qu

120.  Yell rx small stream Algae Org 0.13 0.08 —-0.48 —0.42

121.  CH2b Org 0.01 0.07 —-0.67 —0.93

122.  CH6 Go 0.52 0.02 —0.56 0.14

123.  CH3 Algae, Su Org, Su, Phy 0.01 0.02 —-1.19 -1.67

124. CH4 Algae, Su Org, Su, Phy 0.00 0.01 -095 -1.29

125.  Brown algal mat Algae Org 0.00 0.02 —-0.32 —-1.30

126.  White filamentous goo Org 0.03 0.01 -1.29 -1.34

127.  Orange goo Org 0.21 0.15 1.33 2.00

128.  Green goo Org 0.00 0.04 —-0.10 -—1.63

129.  Orange on rx adjacent Go 0.31 0.02 -096 —1.17

130.  Orange on rx closer Go 0.63 0.05 -0.82 —-0.73

131.  CHS Algae Org, Phy Qu 0.01 0.05 —-0.65 —1.09

132. IMT-3a Ja 0.23 0.11 —0.26 0.65

133.  Paprika (not CH6) Go 0.58 0.01 —0.59 0.02

134.  White & black Su, Org 0.01 0.01 —-1.62 —1.60

135.  Brown on rock FeOx 0.09 0.02 —-0.86 —0.93

136.  Green algal Org 0.10 0.01 023 -0.80

137. IMT-4 Phy 0.05 0.00 -1.29 —-1.38

138.  Paprika seep Go 0.54 0.04 —-0.82 —-0.73

139. IMT-3b Ja, Go Ja, FeOx, 0.42 0.03 0.14 1.02

Su

140.  IMT-2 Go, Ka Qu 0.15 0.01 —0.61 —0.66

141.  White outcrop Org 0.09 0.03 -0.69 —-0.89

142.  Orange white green Ja, Al, Org 0.38 0.10 —0.07 0.32

143.  Or crud rock Ja, Al 0.60 0.15 1.83 3.47

144. IMT-1 Org 0.04 0.03 —-0.32  —0.61

Field traverses?

145.  Traverse 1 Ja, Gy 0.55 0.22 0.97 2.13

146.  Traverse 2 Gy 0.00 0.01 0.27 0.19

147.  Traverse 3 Npi 0.01 0.02 —-2.53 =249

(continued on next page)
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Sample Dominant minerals, mode where determined Band depth Detector score Notes
Catalog/ Vis/NIR ~ XRD SEM/EDS 923 nm 2267 nm  Earth Mars
hand sample

148. Traverse 4 Go 0.46 0.03 -0.30 —0.19

149. Traverse 5 Ja 0.20 0.10 —0.06 0.25

150. Traverse 6 Npi 0.06 0.05 -129 —1.81

151.  Traverse 7 Npi 0.07 0.01 -1.12  —1.49

152. Traverse 8 Org 0.03 0.01 030 —0.62

153. Traverse 9 Ja 0.42 0.07 —-0.10 0.46

154. Traverse 10 Go 0.44 0.01 -0.37 —-0.21

155. Traverse 11 Su 0.01 0.01 —-1.18 —1.52

156. Traverse 12 Ja 0.58 0.22 1.27 2.68

157. Traverse 13 Org? 0.00 0.01 1.02 0.94

158. Traverse 15 Org? 0.00 0.01 -0.19 —-0.04

159. Traverse 16 Ja 0.42 0.07 0.69 2.22

160. Traverse 17 Al 0.01 0.00 —-0.69 —145

161. Traverse 18 Py? 0.13 0.02 -1.04 -1.19

162. Traverse 19 Npi 0.07 0.00 —1.44 232

Field spectra variable (distance) from target®

163. Incremental 4a (6.9 m) Ja, Al 0.49 0.17 0.91 2.50

164. Incremental 4b (5.3 m) Ja, Al 0.30 0.11 0.78 2.01

165. Incremental 4¢ (2.9 m) Ja, Al 0.41 0.12 0.41 2.51

166. Incremental 4d (0.7 m) Ja, Al 0.49 0.15 0.70 1.55

167. Incremental 5a (6.3 m) Ja 0.34 0.05 0.53 1.74

168. Incremental 5b (3.7 m) Go? 0.33 0.03 —0.28 —0.01

169. Incremental 5c (2.6 m) Go? 0.63 0.03 —0.15 0.26

170. Incremental 5d (0.7 m) Go? 0.61 0.05 —-047 —-0.16

171. Incremental 8a (8.5 m) Ja, Al 0.38 0.12 0.61 1.46

172. Incremental 8b (5.9 m) Ja, Al 0.22 0.09 1.28 1.96

173. Incremental 8c (3.1 m) Ja, Al 0.45 0.16 1.32 3.33

174. Incremental 8d (0.6 m) Ja, Al 0.48 0.15 0.82 1.86

Field panoramad

175. Pan la Gy 0.01 0.15 —1.45 =256

176. Pan 2a Npi 0.05 0.14 -0.82 —1.37

177. Pan 3a Npi 0.00 0.12 —-0.54 —1.44

178. Pan 4a Ja, Gy 0.57 0.14 1.37 3.45

179. Pan 5a Go 0.35 0.06 —0.05 0.82

180. Pan 7a Org? 0.12 0.00 —-0.49 —-0.85

181. Pan 8a Ja 0.26 0.02 1.63 3.78

JSC Mars-1 samples

182. Sieved to <44 um 0.01 0.02 035 -0.02

183. Sieved to <44 um 0.00 0.02 —-0.05 —0.62

184. Sieved to 44—125 ym 0.03 0.02 020 —0.11

185. Sieved to 125-500 um 0.03 0.02 —-0.04 —-0.27

Mineral abbreviations: Al: alunite; Ba: barite; Bi; biotite; Cl: clinoclore; FeOx: iron oxide; Fel: feldspar; Go: goethite; Gy: gypsum; Ha: halite; He: hematite; I1: Illite;
Ja: jarosite; Ka: kaolinite; Ma: magnesite; Mo: montmorillinite; Mu: muscovite; Org: organic material; No: nontronite; Npi: no positive mineral identification; Phl:
phlogopite; Phy: unknown phyllosilicate; Py: pyroxene; Pyr: pyrite; Qu: quartz; Ru: rutile; Si: siderite; Su: sulfur; Sy: sylvite; Ta: talc.

@ Spectra collected with 25° FOV bare fiber within <30 cm of target.

b Traverse refers to spectra collected with 25° FOV bare fiber along a 50 m long traverse to simulate a Mars rover data collection strategy. Spectra were collected

<1 m from target.

¢ Spectra collected at variable distance from single numbered target using 1° FOV foreoptic.
d Spectra collected from single vantage point using 1° FOV foreoptic. Azimuths range from ~0-60°.

Laboratory spectra of museum samples were collected at an
emission angle of 20° using a 1 m fiber optic sensor with a 1°
field of view transmissive foreoptic the exit end of which was
~20 cm from the target. The spot size was determined empiri-
cally to be 12.5 cm?. Smaller targets on collected samples were
acquired using the 25° FOV bare fiber at a distance <10 cm.
Two 500 W tungsten quartz halogen light sources (incidence
angle = 45°) were located 180° from each other 50 cm from

the target; data were collected at 2 azimuths 180° apart. The
instrument was optimized prior to collection of each set of spec-
tra (10 spectra at each azimuth) and 10 scans were averaged to
comprise each spectrum. Field spectra were collected using the
same instrument using both the foreoptic and the bare fiber op-
tic cable. Spectra were collected at a variety of distances and az-
imuths (angle between sensor and surface normal) ranging from
~10 cm to ~13 m and ~0° to 60°, respectively. The instrument
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was optimized at ~5 min intervals and in response to changing
light conditions. Five—ten spectra were collected of each target
and each spectrum was an average of 10 scans. All absolute re-
flectance data were normalized to a white Spectralon® (sintered
Halon) standard. Reflectance offsets between the instrument’s
three detectors were corrected by scaling to the middle detec-
tor region (1001-1800 nm). All spectra were averaged for each
experiment and analyzed by the jarosite detectors.

Three sets of spectra were created to test the detector. Lab-
oratory spectra were collected of 3 jarosite and 22 non-jarosite
(evaporites and iron oxides) samples from Wesleyan Universi-
ty’s Peoples Museum (Table 3). Spectra were taken of multiple
locations on some samples to include variations in crystal size,
habit and color. To better assess the sensitivity of the jarosite
detector to mineral assemblages more typical of what is seen
on a planetary surface, spectra were collected of samples taken
from the Sulfur Springs hydrothermal field in St. Lucia in June
and November 2004, where jarosite typically occurs as a hy-
drothermal alteration product (Greenwood et al., 2005, 20006).
Jarosite in Sulfur Springs is characterized by a straw yellow to
rusty orange color and is found as coatings on and veins within
altered dacitic pyroclastic materials. Spectra of Sulfur Springs
samples were taken directly in the field and laboratory spectra
were collected of returned samples.

All reflectance spectra were inspected and compared to pub-
lished mineral spectra to confirm both the presence or ab-
sence of jarosite and primary mineralogy (Hunt et al., 1971;
Hunt and Ashley, 1979; Bishop and Murad, 2005). A spectrum
of yellow-orange material that contained both a broad 923 nm
absorption and 650 nm shoulder and either a sharp 423 nm
absorption or a 2267 nm absorption was considered jarosite.
Jarosite was confirmed in a subset of the Sulfur Springs samples
by X-Ray Diffraction (XRD) and Scanning Electron Micro-
scope Energy Dispersive Spectroscopy (SEM-EDS).

3. Results

Jarosite detector performance is indicated in Tables 3-5.
Both detectors performed similarly overall and correctly classi-
fied 76—-100% of the 3 classes of spectra (n = 185), with an av-
erage performance of 89% for the Earth-optimized and 90% for
the Mars-optimized detectors. The classifiers performed com-
parably on the spectra of rock samples collected under both
laboratory and field conditions, although the detector recog-
nized jarosite in the field spectra better than in the spectra of
rock samples measured under laboratory conditions. This may
be due to the fact that many of the rocks measured in the field
were selected based on the presence or absence of jarosite deter-
mined visually and thus samples with small amounts of jarosite
may have been underrepresented in the field observations.

To further examine detector performance, we compare the
detector output to the strength of the primary absorptions of
jarosite at 923 nm and 2267 nm (Figs. 2-5). Band depths
(BD = 1 — (reflectance at band center/reflectance of contin-
uum at band center)), where the continuum is a line that fits
each edge of the band (Clark and Roush, 1984) were calcu-
lated at 923 nm and 2267 nm and summed and are presented
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Fig. 3. Selected spectra of samples from Wesleyan’s Peoples Museum. Sam-
ple descriptions can be found in Table 3. Samples are grouped according to
performance of at least one of the two SVM-based mineral detectors: (a) true
positives, (b) true negatives, (c) false positives, (d) false negatives. A reference
jarosite spectrum (bold) is sample GDS99 k-y 200c from the USGS Speclib04
(Clark et al., 1993) and is identical in each frame.
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Fig. 4. Selected laboratory spectra of St. Lucia samples. Sample descriptions
can be found in Table 3. Samples are grouped according to performance of at
least one of the two SVM-based mineral detectors: (a) true positives, (b) true
negatives, (c) false positives, (d) false negatives. A reference jarosite spectrum
(bold) is sample GDS99 k-y 200c from the USGS Speclib04 (Clark et al., 1993)
and is identical in each frame.

in Fig. 6 and Tables 3 and 5. Band depths are a standard met-
ric by which spectroscopists derive mineralogy from planetary
spectra. For the spectra correctly identified as jarosite (true pos-
itives) there is a significant positive correlation between the
value of the sum of the jarosite absorptions and the detector
output (Fig. 6a). Both detectors are sensitive to the strength
of the 923 nm absorption, where all correct identifications of
jarosite correspond to BD (923) >20%, with an average BD
(923) of 43-44%. The true positive spectra have the highest av-
erage absorptions at 2267 nm with an average BD (2267) of
19-20%. Spectra correctly classified as non-jarosite (true nega-
tives) have low average values for band depths (<15%). Thus it
appears that the detector performance is dependent on the pres-
ence and strength of both primary jarosite absorptions in the
input range.

A population of the spectra correctly identified as non-
jarosite have BD (923) values >20%. The majority (66%)
of these true negatives are the mineral goethite (FeOOH),
whose spectrum has a primary absorption at ~900 nm due
to Fe3t crystal field transitions, but no absorption (<5%)
at 2267 nm (Hunt and Ashley, 1979; Table 3; Figs. 3b, 4b,
5b). Other mineral samples correctly rejected by the de-
tector include those with BD (923) >15% and BD (2267)
>10% (biotite (K(Fe, Mg)3AlSi3O10(F, OH);), nontronite
(Nag3Fey(S1,A1)4010(OH),>-n(H20)), phlogopite  (KMgs-
(Si3Al)O10(F,OH);), talc (Mg3SigO19(OH),), clinochlore
(Mg, Fe)sAl(SizAl)O19(OH)s)), BD (923) >25% (hematite
(Fe203)), and BD (2267) >20% (kaolinite (AlxSioO5(0OH)a4)).
The detector may be able to distinguish these minerals from
jarosite by differences in the total shape of the spectra over the
entire detector input interval, which is affected by chemistry
and grain size of the individual specimens.

The spectra misclassified by the algorithm as jarosite (false
positives, 6-7% of the validation set) generally tend to ex-
hibit a large absorption at ~900 nm or a steep positive slope
from ~500-800 nm (Figs. 3c, 4c, 5c). Minerals that were mis-
classified as jarosite include nontronite, goethite and sylvite
(KCl), each of which exhibit both of these spectral character-
istics. Three samples containing chlorophyll were also misclas-
sified by the detectors, likely due to a steep positive slope in
the 500-800 nm region. The Mars atmosphere-based detector
(n = 8) was more likely than the Earth atmosphere-based detec-
tor (n = 1) to assign false positives to goethite and nontronite
spectra.

Four samples of the Mars regolith simulant JSC Mars-1
(Allen et al., 1998) dry sieved to three grain sizes (2 samples
at <44 pm, 1 sample each at 44-125 um, 125-500 pm) were
evaluated by both detectors. The Mars-tuned detector correctly
identified all samples as non-jarosite, while the Earth-tuned de-
tector correctly identified 50% of the samples.

False negative assignment errors comprise ~3% of the val-
idation set (Figs. 3d, 4d, 5d). The average strength of the pri-
mary jarosite absorptions in these spectra was ~50% of that of
the spectra correctly identified as jarosite (Tables 3, 5; Fig. 6).
Some of these spectra are noisy and/or have low overall re-
flectance, which may act to reduce the strength of characteristic
jarosite absorptions and result in a misassignment by the de-
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Fig. 5. Selected field spectra of St. Lucia samples. Noisy sections of the spectra
due to the atmosphere are removed for clarity. Sample descriptions can be found
in Table 3. Samples are grouped according to performance of at least one of the
two SVM-based mineral detectors: (a) true positives, (b) true negatives, (c) false
positives, (d) false negatives. A reference jarosite spectrum (bold) is sample
GDS99 k-y 200c from the USGS SpeclibO4 (Clark et al., 1993) and is identical
in each frame.

tector. Small quantities of jarosite resulting in weak bands in a
mixed spectrum might also be overlooked by the detector.

The jarosite detector is a linear kernel SVM with nine sup-
port vector spectra. We applied common algebraic simplifica-
tions to reduce jarosite determination from nine detector dot
products to a single dot product. Since the two detector input
intervals yield 120 reflectance values, the algorithms perform
only 120 floating-point multiplications, 1 subtraction and a
comparison to zero per detection. On current radiation hardened
processors (e.g., the MER RAD6000 operating at a maximum
of 35 MIPS) a single jarosite determination would take less than
a millisecond. Our detectors are available to the collaborative
rover research communities spread across the Jet Propulsion
Laboratory (JPL), NASA Ames, Carnegie Mellon University,
the University of Minnesota, the University of Washington, the
University of Michigan, the Massachusetts Institute of Technol-
ogy via the Coupled Layer Architecture for Robotic Autonomy
(CLARALty) (Nesnas et al., 2003) software architecture. The de-
tector is integrated into CLARALty as a Level 2 Decision Layer
component.

4. Discussion and conclusion

The SVM jarosite detector recognizes jarosite in VNIR re-
flectance spectra of natural mixtures under both laboratory and
field conditions with an average success rate of 89-90%. The
detector performance corresponds generally to the strength of
the jarosite absorptions at 923 and 2267 nm as measured by
band depths, where all positive detections had BD (923) >20%
(average = 43%) and BD (2267) >0 (average = 20%). We can
predict that rocks with quantities of jarosite resulting in spec-
tra with band depths of similar magnitude would be properly
classified by this detector.

Band depth is a function of the combination of modal min-
eralogy, mineral composition and grain size; these factors are
often unknown for planetary surfaces. We did not measure all of
these characteristics for the samples used in this experiment, but
we calculated modal estimates of jarosite abundance from the
classification of backscatter electron (BSE) images. These esti-
mates are rough, as the area displayed in a BSE image (~tens
of microns) is much smaller than then spot size of the VNIR
spectrometer (centimeters) and these samples are typically het-
erogeneous over this range of scales. Jarosite abundance in 6
relatively homogeneous Sulfur Springs samples range from 19—
49% (average = 28%) of the surface layers (~the penetration
depth of the spectrometer, <20 microns). These samples were
all correctly classified by the detector and have average BD
(923) = 38% (range 26-56%) and BD (2267) = 17% (range
8-26%; Table 3). This is greater than, but comparable to the
modeled jarosite abundance of 10% at the outcrops of Meridi-
ani Planum (Clark et al., 2005). Thus there is at least one place
on Mars where jarosite may occur in high enough abundance to
be recognized by this detector.

At Sulfur Springs, jarosite is found in intimate mixtures of
alunite (typically (K, Na)Al3(SO4)2(OH)e), goethite and gyp-
sum (CaSO4-2H,0), typically as rinds <5 microns thick upon
alunite or layered within goethite (Greenwood et al., 2005,
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Fig. 6. Comparison of Earth- and Mars-optimized jarosite detector outputs to the band depths (BD) at 923 and 2267 nm of all spectra (n = 185). A detector output
>0 is positive for jarosite. (a) A linear increase in detector output correlates with the strength of the primary jarosite absorptions as indicated by BD (923) and BD
(2267) and their sum (b). Linear regressions are plotted. (c) Incorrect detections show no relationship between the detector score and BD (923), BD (2267) or their
sum (d). The key for (a) is same as (c) and the key for (b) is the same as (d). The line at BD = 0.2 is for reference.

2006). Each of these minerals is recognizable in the spectra of
the field samples. The detector is successful in distinguishing
jarosite from these composite spectra of this hydrated assem-
blage of sulfates and iron hydroxide that is typical of acidic
hydrothermal systems on Earth and likely Mars. The detector
is also successful analyzing spectra collected under field con-
ditions. We find that the detector performance is optimized by
limiting the analysis to: (1) regions of the spectrum that are spe-
cific to jarosite and (2) the least noisy portions of the spectrum
(avoidance of atmospheric contributions to the spectra). Other
robust mineral detectors can be built using this architecture if
they have absorption bands that are distinguishable from other
common and associated minerals.

The algorithm is also able in most cases to distinguish
jarosite from minerals that are spectrally similar within the de-
tector input interval. Goethite, nontronite and hematite have
primary absorptions at ~900 nm and nontronite has an addi-
tional absorption at ~2290 nm. That these minerals were prop-
erly distinguished from jarosite demonstrates the fact that the
SVM incorporates spectral shape across the entire input range
to classify each spectrum. Each of these minerals has been iden-
tified at Mars: hematite has been identified at both MER land-

ing sites (Christensen et al., 2000; Klingelhofer et al., 2004;
Morris et al., 2006) and goethite has been identified in rocks
in the Columbia Hills (Morris et al., 2006). The clay mineral
nontronite has been identified on Mars by the OMEGA in-
strument on Mars Express (Poulet et al., 2005). Iron oxides
and hydroxides may also occur with jarosite as a function of
factors including pH, water/rock mass ratio, composition and
fO, (Stoffregen et al., 2000; Zolotov and Shock, 2005). At
Sulfur Springs, jarosite and goethite are found interlayered in
several outcrops, where the jarosite layers are several microns
thick. Hematite occurs with jarosite at the outcrops of the Op-
portunity landing site, where they may be genetically related
(Klingelhofer et al., 2004; McLennan et al., 2005). Thus it is
important that the detector is able to distinguish jarosite from
these associated and spectrally similar minerals.

Perhaps the greatest challenge to spectroscopy at the sur-
face of Mars is the near-ubiquitous coating of fine-grained ferric
dust. It is thus imperative that any mineral detector classify dust
correctly and recognize target minerals within a spectrum con-
taining dust. That the Earth-tuned detector misclassified two
of the JSC Mars-1 samples is troubling, however the detector
scores for these spectra were very close to the detector thresh-
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Table 4

Jarosite detector performance

Experiment Category Earth Mars
atmosphere- atmosphere-

tuned detector
(% correct)

tuned detector
(% correct)

Museum quality Jarosite detection 8/8 (100) 7/8 (88)
samples (in lab)
Non-jarosite 24/26 (92) 24/26 (92)
rejection
Field samples (in Jarosite detection 16/21 (76) 17/21 (81)
lab)
Non-jarosite 54/59 (92) 54/59 (92)
rejection
Field-collected Jarosite detection 17/21 (81) 21/21 (100)
spectra
Non-jarosite 45/50 (90) 43/50 (86)
rejection
Overall 164/185 166/185
performance (89%) 90%)
Table 5

Average values of band depth (BD) at 923 nm and 2267 nm and detector output
of all samples (n = 185) for Earth (@ ) and Mars (®)-tuned detectors

True positives True negatives False positives False negatives
® e ® ¢ ® ® ® ®
N 41 45 123 121 12 14 9 5

BD (923)  44% 43% 11% 9% 4% 25% 21%  22%
BD (2267) 20% 19% 3% 3% 4% 4% 8% 14%

>'BD 65% 61% 15% 12% 9% 29% 31%  36%
Detector
score 0.96 1.59 —-1.12 —-1.72 0.58 0.62 —-0.46 —1.27

old. These and other false positives could be reduced or elimi-
nated for both detectors by increasing the detector output value
that corresponds to a positive detection. For example, chang-
ing the detection threshold for both classifiers to 0.5 would
reduce false positives by 67 and 47% while increasing false
negatives by 17 and 18% for the Earth and Mars-tuned detec-
tors, respectively. This conservative approach would minimize
time allocation to the investigation of misidentified targets.

Although dust contaminates the majority of VNIR spectra,
relatively dust-free rock surfaces have been identified at the
Mars Pathfinder (Bell et al., 2000; Bridges et al., 2001) and
Gusev crater sites (Farrand et al., 2006). Because VNIR point
spectra are relatively computationally inexpensive to acquire,
onboard processing of all spectra could potentially be accom-
plished to rapidly identify target minerals in the subset of dust-
free or dust-poor rocks. At a rock or outcrop, rapid analysis of
spectroscopic measurements could be used to identify targets
for further measurement with more expensive mineralogical
and geochemical analyses.

The detectors are computationally light and quickly process
the reflectance data in our validation set. The input data are
the ratio of radiance of the target and the radiance of a Lam-
bertian reflector, where a dark current has been subtracted from
both measurements. On board a rover, point spectra may not
routinely be processed to reflectance using calibration targets.
However, we predict that the detectors could run well on spec-

tra that approximate reflectance, because the detectors are sen-
sitive to the shape of mineral absorptions, not their absolute
reflectance values. Conceivably, approximate reflectance could
be calculated during standard rover operations by dividing each
acquired point spectrum (or pixel converted to radiance in the
case of an imager) by the solar radiance at the top of the mar-
tian atmosphere as has been done for Pancam (Bell et al., 2006).
This product could be run through the detectors on board and
returned or discarded as appropriate. The detectors could also
be useful for the data mining of returned point spectra or mul-
tispectral or particularly hyperspectral imaging data, where all
spectra and every pixel could be examined and prioritized by
the classifiers.

The detectors described here also have the potential to
strongly enhance the science return from hyperspectral imagers
by performing onboard processing. Here again, data downlink
restrictions highlight the need for robust mineral detection al-
gorithms. Both OMEGA and CRISM will map only ~5% of
the Mars surface at full spatial and spectral resolution during
their nominal missions. While some targets are preselected for
full resolution study (e.g., the MER landing sites), other high
priority targets on Mars will be selected in response to observa-
tions made by the instruments in a multispectral survey mode.
The jarosite detector and other mineral detection algorithms can
be utilized to analyze any and all image cubes (x, y, A) for a
selected system. Such algorithms can help ensure that priority
targets are not overlooked in these datasets.
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