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Abstract ─ The coastal marsh ecosystems around the Long 

Island Sound estuary are changing due to anthropogenic 
pressure, invasive species, habitat restoration and management, 
and sea level rise.  It has become increasingly important to 
develop methods to characterize and classify marsh vegetation to 
monitor changes over time, understand the mechanisms of 
change, and develop baseline data to measure the efficacy of 
ongoing restoration and management programs.  This study 
examines the effectiveness of using multitemporal satellite 
imagery and field spectral data to classify and map the common 
plant communities of the Ragged Rock Creek marsh, located 
near the mouth of the Connecticut River. The dominant marsh 
species, Spartina patens, Phragmites australis and Typha spp., 
have been found to be separable based on their individual 
spectral and structural characteristics and the phenological 
variability of each species.  Classification methodology includes 
the segmentation of QuickBird multispectral imagery collected 
between 2004-2006 into image objects, which are then classified 
based on visible to near-infrared reflectance spectra collected in 
the field from 2004-2006 at the Ragged Rock Creek marsh. The 
field data are processed to create QuickBird band ratios, that 
are used to assign each image object as one of the dominant 
plant species found in the marsh.  In addition, LIDAR data, 
collected on a single date in 2004, have been analyzed to 
determine average heights of dominant plants. These canopy 
height data are useful for discriminating among the marsh 
species, and contribute dramatically to the object-oriented 
classification of the QuickBird multispectral data.  Collectively, 
these datasets and protocols provide a set of guidelines 
recommended for future remote sensing data collection in marsh 
inventory and analysis projects. 

 

I. INTRODUCTION 

Coastal wetlands are a critical component of the Long 
Island Sound ecosystem. However, over the past century, a 
significant amount of these wetlands has been lost due to 
development, filling and dredging, or damaged due to 
anthropogenic disturbance and modification.  Global sea level 
rise is also likely to have a significant impact on the condition 
and health of coastal wetlands, particularly if the wetlands 
have no place to migrate due to dense coastal development.  
In addition to physical loss of marshes, the species 

composition of marsh communities is changing.  Spartina 
alterniflora (salt cordgrass) and Spartina patens (salt marsh 
hay), once the dominant species of New England salt 
marshes, are being replaced by monocultures of the non-
native genotype of Phragmites australis (Cav.) Trin. ex Steud 
(common reed) in Connecticut marshes [1]. With the 
mounting pressures on coastal wetland areas, it is becoming 
increasingly important to identify and inventory the current 
extent and condition of coastal marshes located on the Long 
Island Sound estuary, implement a cost effective way to track 
changes in the condition of wetlands over time, and monitor 
the effects of habitat restoration and management. The 
ultimate goal of this project is to provide protocols that can be 
used to classify multispectral data which are most available to 
land managers. 

II. DATA AND METHODS 

A. Study Sites 

Ragged Rock Creek Marsh is a 142 hectare brackish tidal 
marsh located on the western shore of the Connecticut River, 
approximately 2.5 km north of its confluence with Long 
Island Sound (Fig. 1). The vegetation at Ragged Rock Creek 
Marsh is typical of Connecticut’s estuarine tidal marshes, 
where the pattern of growth is generally controlled by 
salinity, a function of tidal inundation and therefore elevation.  
In general, Ragged Rock Creek is characterized by a mosaic 
of brackish meadows and brackish reed marshes. Salt 
meadow cordgrass (Spartina patens) dominates the meadows 
in many areas of Ragged Rock with scattered occurrences of 
black grass (Juncus gerardii) and spike grass (Distichlis 
spicata). Smooth cordgrass (Spartina alterniflora) and 
occasionally tidalmarsh amaranth, (Amaranthus cannabinus) 
are characteristic plants of the low marsh, often found along 
the banks of the tidal creeks. The high marsh areas and upper 
border typically support dominant stands of narrow-leaved 
cattail (Typha angustifolia), hybrid cattail (Typha x glauca) 
and the non-native common reed (Phragmites australis).  P. 
australis is common throughout the marsh often forming 
dense monotypic stands in the mid to high marsh. 
Additionally, its distribution is strongly correlated to the 



 

mosquito ditches that exist throughout the marsh, a pattern 
that has been documented in other studies [2].   

  

 
Fig. 1. QuickBird image of Ragged Rock Marsh in southern 

Connecticut 
 

B. Data 

Reflectance spectra were obtained using an ASD Fieldspec 
FR spectroradiometer (Analytical Spectral Devices, Boulder, 
CO) with a wavelength range of 350-2500 nm, a sampling 
interval of 1.4 nm between 350-1000 nm and 2 nm between 
1000-2500 nm, and a spectral resolution of 3 nm between 
350-1000 nm and 10 nm between 1000-2500 nm. The 
spectrometer is equipped with a 1 m long fiber optic sensor 
with a 25˚ field of view. Spectra were collected by 
positioning the fiber optic sensor ~nadir within 1 m of the 
species canopy by hand. Late in the season, the height of 
Phragmites prohibited a nadir view and canopy spectra were 
collected at an oblique angle. Individual spectral 
measurements were an average of five scans and each canopy 
was generally sampled 10 or more times.  Reflectance spectra 
were normalized to a white Spectralon® (sintered Halon) 
panel.  All spectra were collected between 10 am and 2 pm, 

except for 10/1/05, where the tides limited marsh access to 
the late afternoon (~4 pm). 

To correlate better the field spectra to satellite data, 
individual field reflectance spectra were averaged over the 
four QuickBird band intervals to produce a simulated 
QuickBird band value (Fig. 2). The values for individual 
samples were averaged to attain a single reflectance value for 
each target and a standard deviation was calculated. From 
these data, five simple spectral indices were calculated: Band 
2/Band 1, Band 4/Band 3, Band 3/Band 2, Band 4/Band 2 and 
the Normalized Difference Vegetation Index (NDVI = (Band 
4 – Band 3)/(Band 4 + Band 3)). 

 

 
Fig. 2. Multitemporal spectral reflectance of Phragmites australis 
 
A floristic inventory of the marsh was conducted 

throughout the summer of 2006, in large part to establish sets 
of training and validation data for image classification work.  
A set of 1,000 randomly distributed point locations within the 
marsh was generated. At each location, 4 m2 quadrats were 
placed and plant community composition and species 
abundance were recorded.  Field GPS coordinates for each 
sampling site were recorded using Trimble GeoExplorer3 
GPS units and were post-processed to improve accuracy using 
Trimble GPS Pathfinder Office, or coordinates were recorded 
using Garmin Map 76CSx GPS coupled with a CSI-Wireless 
MBX-3S Differential Beacon Receiver for enhanced accuracy 
using real-time differential correction. Data collected at each 
sampling site included: species present, estimated percent 
cover for each species, height of dominant species, and 
sociability rank for each species based on its distribution (e.g., 
tightly clustered in one area vs. distributed throughout) across 
the plot. Digital photographs also were taken at each site to 
document field conditions at the time the inventory was 
conducted.  In total, 920 vegetation plots were recorded at 
Ragged Rock Creek; 875 were random plot locations and 45 
were subjective plot locations selected by the field teams as 
unusual, rare or monotypic plant communities. Some plots 
were revisited during the growing season; only one data point 



 

was maintained for each plot location resulting in a grand 
total of 894 field points. 

Multitemporal, multispectral high resolution (2.44-meter at 
nadir) QuickBird satellite image data were acquired for a 100 
km2 area at the mouth of the Connecticut River (Fig 3.) from 
July 2003 through November 2006. The QuickBird 
multispectral sensor collects reflected radiation in the blue 
(450-520 nm), green (520-600 nm), red (630-690 nm) and 
near-infrared (760-900 nm) portions of the electromagnetic 
spectrum.  

 

 
Fig. 3. Location of multiple QuickBird image acquisitions 
 
Eleven QuickBird scenes were acquired during the late 

spring to early fall growing season over the four year period 
for the Lower Connecticut River Study area.  While the intent 
was to collect multiple QuickBird scenes throughout a single 
growing season in order to incorporate seasonal changes 
within plant communities in the classification, due to weather 
and satellite competition, it took three years to capture 
imagery that was adequately distributed throughout the 
growing season  Of the eleven scenes, five were selected to be 
used in the final classification based on image quality (lack of 
clouds and haze) and acquisition month and day, and 
importance as determined by field spectra data analysis. 
Selecting five images is consistent with Key et al. [3] who 

found that, when classifying tree species, there was a steady 
increase in classification accuracy as dates were added, up to 
six dates. Although the images spanned several growing 
seasons, the month and day of acquisition was considered 
more important than the year of acquisition because the 
monthly phenologic variability was observed to be much 
greater than inter-annual variability in the data set.  

C. Classification 

Of the five simple band ratios calculated from the field 
reflectance spectra, four were determined to be most useful in 
identifying at least one major plant community from all others 
on the radiometry rule graphs. The four band ratios (4/3, 4/2, 
3/2, 2/1) were calculated for the five QuickBird images using 
image ratio models in ERDAS Imagine, resulting in 20 
potential band ratio images to use in classification. The 
radiometry rules determined that 14 band ratio images could 
potentially be beneficial in classification by contributing to 
the separation of plant classes.  The only raw QuickBird data 
applied to the classification was July 20, 2004 Near-IR band 4 
in order to separate water from vegetated areas.  A polygon of 
the Ragged Rock Creek marsh was used to further subset each 
band ratio image to eliminate variability from non-marsh 
features such as houses, trees and lawns.  

eCognition (version 3.0, Definiens Imaging) an image 
segmentation and object-oriented classification software 
system, was used as the basis for QuickBird image 
classification. eCognition first segments images by grouping 
pixels into homogeneous regions and then applies fuzzy 
classification to image rules and/or training samples to 
produce a classification [4].  The band ratios listed in section 
II.B., a LiDAR data set with 0.9 meter spacings, and the four 
raw bands of the July 20, 2004 QuickBird image were added 
to eCognition. Each layer in the project is weighted to 
determine how much it contributes to segmentation, or the 
creation of boundaries that maximize heterogeneity between 
homogeneous objects. The segments are treated as units and 
each is classified as single entity. This is in contrast to per-
pixel classifiers where each pixel is treated independently of 
all others, including its neighbors. In this case, thirteen of the 
fourteen image ratios had a weight of 0.5 on a scale of 0 to 1 
and one ratio, the July 20, 2004 2/1 ratio had a weight of 0 
because the July 20, 2004 Quickbird image was the only raw 
date of imagery included in the project.  The blue, green and 
red bands of the July 20, 2004 QuickBird image had a weight 
of 0.8 and the NIR band had a weight of 1.0.  The LiDAR had 
a weight of 1.0.   

The relative size of each segment is determined by the 
scale parameter of the eCognition project. The scale 
parameter determines the maximum allowed heterogeneity 
between image objects making it related to segment size.  
Although multiple sizes of nesting segments are possible, trial 
and error revealed that one segment level was acceptable for 
this application. After trying many different scale parameters 
and assessing the variety of output segment sizes, a scale 
parameter of 20 was determined to be the optimum size to 
best mimic the marsh community in the QuickBird data.  



 

Spectral information contributed 70% and spatial information 
contributed 30% to segment boundary determination.  

The second step is classification where each segment is 
assigned to a class.  The radiometry rules guided the writing 
of rules which eventually determined the classification result, 
by revealing which species in which band ratio were distinct 
from other species. The classification thresholds were 
determined using one-third of the field points (305) and built-
in eCognition tools such as Feature View, which displays 
each segment, or object, in grayscale according to its value 
for the selected feature. For example, selecting the September 
4/3 band ratio in feature view displays an image where dense 
vegetated features such as trees appear light or white, and 
segments representing non-vegetation are black. Other 
vegetated segments are colored in varying shades of gray.  It 
is a valuable tool when selecting rule thresholds. One third of 
the field points (305 points) were randomly selected to help 
guide the classification. The remaining two thirds of the 
points were reserved for accuracy assessment.  

D. Accuracy Assessment 

The accuracy assessment determines the quality of 
information derived from remote sensing data [5] and 
indicates the sources of error.  Two-thirds of the field points 
(n = 613) were utilized for accuracy assessment.  Because 
GPS error could be as great as 2 meters, a 2 meter buffer was 
calculated for each point. A point was eliminated from the 
accuracy assessment if the buffer area included more than one 
class on the classified image. Of the 613 points available for 
accuracy assessment, 227 were eliminated due to the buffer 
criterion leaving 386 points. Kappa coefficients (KHAT) 
were calculated using the method of Congalton and Green [5]. 

III. RESULTS 

A. Phenology of major species 

The shape of the reflectance spectra of each species (Fig. 4) 
is broadly similar, including the following absorptions typical 
of healthy photosynthesizing vascular plants: 430 nm (Chl a), 
448 nm (Chl b, carotenoids), 471 nm (carotenoids), 642 nm 
(Chl b), 662 and 680 nm (Chl a), the green peak at 550 nm 
and strong reflectance in the NIR at ~800 nm. During the 
greenup phase of growth near the beginning of the growing 
season, each spectrum shows expected increases in the 
strength of the absorptions at ~450 nm and ~680 nm due to 
chlorophylls and carotenoids within the leaves and an 
increase in NIR reflectance due to leaf biomass. This trend 
continues in each species until the onset of senescence. 
Comparison of the spectra of individual species on each 
sampling date shows that the magnitude and shape of the 
spectra differ qualitatively, which is a function of each 
species’ chemistry, biomass and phenological cycle.  

To relate spectral variability to the QuickBird data, 
reflectance spectra of each species taken during both field 
seasons are reduced to QuickBird band ratios and plotted in 
Figure 5. The spectral behavior of the two sites is broadly 
consistent over the two growing seasons. Trends of NDVI and 
the 4/3 ratio mimic each other, with the 4/3 ratio providing 

greater separability amongst the individual points (Fig. 5a,b). 
All species show a rise in these indices at approximately day 
160 (early June) corresponding with the green-up phase of 
plant growth and a decline in the indices corresponding to 
senescence.  The behavior of the seasonal variation in each 
index varies with plant species. S. patens and Phragmites 
reach peak values at day 200 and Typha at day 170. Typha 
NDVI and 4/3 values are generally higher than the other 
species near the time of its peak (mid to late June), while 
Phragmites values exceed the other species in mid August 
through early September. 

 

 
Fig. 4. Spectral reflectance of S. patens, Typha spp., and P. 

australis acquired through in situ radiometry, August 19, 2004. 
 
The seasonal pattern of the QuickBird 2/1 ratio of S. patens 

is distinct from the other two species (Fig. 5c).  Values of this 
ratio are similar for each species at the beginning of the 
season, but S. patens rises to a peak value ~ day 200.  The 
absolute value for S. patens is twice that of Typha and 
Phragmites from early June through early August.  

The general seasonal pattern of the QuickBird 3/2 ratio for 
all species shows an initial decline from day 140 to ~ day 180 
and then an increase (Fig. 5d).  S. patens values in this index 
are lower than the other two species over days 165 to 225 
(mid June – early August).  Typha values exceed those of the 
other species from mid-July onward.  

The general seasonal pattern of the QuickBird 4/2 ratio for 
all species shows an increase in the middle portion of the 
growing season and decline at the end (Fig. 5e).  S. patens 
values in this index are consistently lower than the other two 
species throughout the year.  Values for Typha spp. are higher 
than and separable from the other two species in mid to late 
June. Values for P. australis are higher than and separable 
from the other two species in late August – early September. 

 



 

 
Fig. 5. Multitemporal QuickBird (a) NDVI, (b) band 4/3 ratio, (c) 

band 2/1 ratio, (d) band 3/2 ratio, and (e) band 4/2 ratio 
 
Of the five simple band ratios calculated from the field 

reflectance spectra, four were determined to be most useful in 
identifying at least one major plant community: for P. 
australis, the 4/3 ratio on September 8, 2006, for S. patens, 
the 2/1 ratio on July 14, 2004, and for Typha spp., the 3/2 

ratio on August 12, 2005 and the 4/2 ratio on June 15, 2004.  
These dates both show the greatest spectral separability 
between individual species and best correspond with the dates 
of the QuickBird images available for classification.  

 

 
 

B. QuickBird Classification 

QuickBird classification results are displayed in Fig. 6.  
Qualitatively, the classification identifies contiguous areas of 
P. australis, Typha spp., and S. patens. The distribution of 
these classes is broadly consistent with field observations, for 
example, the correlation of P. australis and anticorrelation of 
S. patens with creeks and ditches.  An accuracy assessment of 
the classification results was performed where each validation 
point is assigned to dominant classes.  The overall accuracy 
was 66.8% with a kappa coefficient of 0.56.  P. australis had 
the highest user’s accuracy (87.0%) and a high producer’s 
accuracy (76.9%). Typha spp. had the lowest user’s accuracy 
(59.1%) but the highest producer’s accuracy (88.3%) 
indicating an over-classification of other/mixed reference 
points as Typha spp.  S. patens had a similar over-
classification with 32 points being classified as S. patens but 
being labeled other/mix on the reference dataset. The result 
was 62% user’s accuracy for S. patens and a 79.2% 
producer’s accuracy. The over-classification of Typha spp. 



 

and S. patens is more likely to be an artifact of the reference 
dataset and the assignment of class dominance to a complex 
field point dataset than a true inability to classify. 

 

Fig. 6. QuickBird image (Bands 4, 2, 1) and classification 
results (red=Phragmites australis, green=Spartina patens; 
orange=Typha spp.) 

 
Because of the difficulty in assigning continuous and 

complex floristic data to one single class, the accuracy table 
was re-calculated where the validation data are defined by the 
presence of the named species.  This results in an increase in 
overall accuracy to 82.9% (kappa coefficient = 0.77) as well 
as producer’s and user’s accuracies in each category. The 
User’s accuracy for the three species classes improved 
dramatically.  Seven of the nine points classified as P. 
australis but labeled other/mixed, contained some P. 
australis.  Twenty-two of the 42 points classified as Typha 
spp. but labeled as other/mixed, contained Typha spp. and 25 
of the 32 points classified as S. patens but labeled 
other/mixed contained S. patens. The greatest change is the 
improvement of commission errors for S. patens, which we 
suggest results from its distribution as understory in many of 
the validation quadrats. Although all three species saw a 
slight improvement in producer’s accuracy with P. australis 
going from 76.9% to 82.7%, Typha spp. changing from 
88.3% to 92.9% and S. patens changing from 79.2% to 
85.9%, the greatest improvement in producer’s accuracy 
occurred in the other/mix class.  In this presence/absence 
accuracy table, reference points were moved out of the 
other/mix class and into the appropriate species class, leaving 
the other/mix class containing points that did not contain any 
P. australis, Typha spp. or S. patens.  In other words, the 
other/mix class more accurately represents other and mixed 
species. 

III. DISCUSSION AND CONCLUSIONS 

The spectral characteristics of vegetation are due to in leaf 
pigments, plant structure (biomass and canopy architecture 
and cover) and plant health throughout the phenological 
cycle. The variability observed in individual reflectance 

spectra is replicated when these spectra are resampled to 
QuickBird bands. Much of the spectral variability in the 
resampled data can be attributed to expected increases in 
plant pigments and biomass during the green up phase of 
plant growth, and the decline of these parameters during 
senescence. The magnitude and rate of these changes is found 
to differ in individual species allowing their spectral 
discrimination.   

Many studies have shown a correlation between the near-
infrared reflectance of vegetation and biomass.  This effect is 
seen in the resampled data where P. australis and Typha spp., 
both dense monocultures ≥ 2 meters high, have higher NDVI, 
4/3 and 4/2 values throughout the growing season than the 
low growing S. patens (Figs. 5a, b, e).  NIR index values peak 
for Typha spp. in the mid - late June, corresponding to field 
observations of peak plant heights of 6 to 7 feet, full 
development of flowers and wholly green leaves. P. australis 
displays peak NIR index values in mid August to early 
September correlating to peak plant heights of up tp four 
meters and the development of flowers. Additionally, by late 
August, Typha leaves are mostly brown, exacerbating the NIR 
distinction between the two species on this date. The 
differences in the timing of peak biomass between Typha and 
P. australis were used to discriminate between these two 
species in the classification.  The late season peak in NIR 
reflectance for P. australis [6,7,8] and its distinction from 
Typha [9] have been noted in other marshes. 

Some of the variability in the spectral indices can be 
correlated to genetic differences in pigment concentrations 
between the three species. The green:blue of S. patens is 
dramatically higher than that of P. australis or Typha from 
mid June through late August (Fig. 5c).  We attribute this to 
inherent differences in the amount of chlorophyll b and 
carotenoids in these species, both of which absorb in the blue 
portion of the spectrum (Fig. 4).  This effect can be seen in 
the field, where both P. australis and Typha leaves are 
observed to have a slight bluish hue. The peak in the 2:1 
index for S. patens in mid July corresponds to maximum 
pigment concentration at this time of year. This is also the 
time of peak biomass of this species as recorded in the NIR 
ratios, but, in general, the NIR indices for S. patens cannot be 
separated as well from the other species.   

Typha also records seasonal changes in pigment 
concentrations that were useful for classification.  Values for 
red:green are higher for Typha than the other species in early 
August (Fig. 4d) likely due to a reduction in leaf chlorophyll 
pigments during senescence in this species at this time. The 
timing of Typha senescence is also recorded in the NIR and 
both the 3:2 and 4:2 indices were utilized to distinguish Typha 
in the classification. 

The resampled spectral data generate the following set of 
spectral rules that may be applicable to the distinction of P. 
australis, Typha and S. patens communities: 1) P. australis is 
best distinguished by its high NIR response late in the 
growing season due to its high biomass especially with 
respect to the other species, 2) Typha is best distinguished by 
NIR response in June and high red: green response in August 



 

which correspond to peak biomass and senescence, 
respectively, and 3) S. patens is best distinguished by pigment 
differences that result in a unique green:blue throughout the 
growing season, peaking in July.  These indices suggest that 
multispectral data such as QuickBird is adequate to remotely 
measure and distinguish the phenological characteristics of 
these species. The data further suggest that if these 
phenological relationships hold from year to year, these rules 
can be applied to single date multispectral data to look for 
particular species.  For example, our observations lead us to 
recommend acquisition of color infrared or four band satellite 
data during late August to early September to facilitate 
detection of P. australis. 

The phenological trends seen here can vary as a function of 
plant vigor, which may depend on changes in salinity, 
weather, predation or disturbance.  That these trends are 
consistent over two years at two separate areas of Ragged 
Rock Creek Marsh suggests that these rules may have broader 
spatial and temporal application, but are perhaps best limited 
to regions of consistent climate.  
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