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Abstract—We have developed a highly accurate Support 
Vector Machine (SVM) based detector capable of 
identifying jarosite (K, Na, H3O)Fe3(SO4)2(OH)6) in the 
visible/NIR (350–2500 nm) spectra of both laboratory 
specimens and rocks in Mars analogue field environments.  
To keep the computational complexity of the detector to a 
minimum, we restricted our design to an SVM with a linear 
kernel and a small number of support vectors.  We used our 
generative model to create linear mixtures of end-member 
library spectra to train the SVM.  We validated the detector 
on museum quality laboratory samples (97% accuracy) and 
field rock samples measured in both the laboratory and the 
field (both 88% accuracy).  In the interest of technology 
infusion, the detector has been integrated into the CLARAty 
autonomous mobile robotics software architecture1,2. 
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1. INTRODUCTION 

Data collection capabilities of Mars rovers far surpass 
downlink rates, which can result in a critical loss of valuable 
science data.  Onboard techniques for identifying 
geologically relevant information and prioritizing its 
downlink have the potential to dramatically increase the 
science return of future rover missions.  For these reasons, 
we have developed methods to construct mineral detectors 
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capable of running on current and future rover and orbital 
hardware.  Carbonate and sulfate minerals are of particular 
geologic importance because they can signal the presence of 
water which is necessary for life.  In our previous work, we 
reported on the creation and testing of a calcite (a carbonate 
mineral) detector [3, 8, 9].  In this work, we describe our 
jarosite (a sulfate mineral) detector.  Our focus on jarosite is 
driven by the recent discoveries of the mineral at the Eagle 
and Endurance craters in Meridiani Planum by the Mars 
Exploration Rover (MER) Opportunity [15]. 
 
The jarosite detector was developed using a support vector 
machine (SVM), a type of supervised machine learning 
classifier.  A brief introduction to SVMs is given in Section 
2.  In Section 3, we describe the source of data used to train 
the detector.  We then describe the development of the 
jarosite detector in Section 4.  In Sections 5 and 6, we assess 
the performance of the detector on museum quality 
laboratory samples and field samples (measured in both the 
laboratory and field).  Integration of the detector with the 
Coupled Layer Architecture for Robotic Autonomy 
(CLARAty) and the detector’s low computational 
complexity per analysis of spectral measurement is 
discussed in Section 7.  Finally, in Sections 8 and 9, we 
draw conclusions and offer directions for future work, 
including the use of ensemble classifiers and the 
applicability of our techniques to hyperspectral images 
taken from airborne and spaceborne instruments such as 
AVIRIS, Hyperion, OMEGA and CRISM. 

2. SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMs) are a family of classifiers 
that identify the optimal linear separator between classes in 
a (possibly) high dimensional space [7].  There are two 
aspects of SVMs that make them appealing. First, SVMs 
belong to a category of machine learning techniques that 
produce empirically derived classification algorithms by 
explicitly attempting to maximize the margin, the boundary 
that separates one type of classified data from another. 
Maximizing the margin prevents the algorithm from over 
fitting the training data, which can lead to poor algorithm 
performance on new input data sets. Thus, maximizing the 
margin leads to better generalization of the classifier.  
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Second, nonlinear decision boundaries are supported by 
mapping the input feature space to a higher dimension 
(possibly infinite) where the features are linearly separable.  
The key is that the mapping is carried out implicitly so that 
all that is necessary is to compute dot products in the 
original input feature space. 
 
A primary disadvantage of support vector machines is that 
the time to classify points is proportional to the number of 
support vectors, which for complicated problems can be as 
large as the number of training examples.  Since we wanted 
to train on thousands of examples, this would result in 
unreasonably slow classification.  Instead, we decided not to 
use a kernel function, leaving us with a linear support vector 
machine that can be evaluated quickly. 

3. GENERATIVE MODEL  

Our generative model was first used to create synthetic 
spectra to train our carbonate mineral detector [3].  We 
describe the model again here because it is integral to our 
detector creation methodology.  Readers familiar with our 
previous work may wish to skip this section. 
 
A potential drawback of many types of machine learning 
classifiers is that large numbers of training examples are 
often required for the network to converge (learn).  Our 
initial experiments showed that tens of spectra were 
insufficient to train SVMs to predict the presence or absence 
of mineral end-members.  This presented a problem since 
collecting only a few dozen samples often requires days of 
fieldwork followed by lab work to verify the modal 
mineralogy of each sample.  While it is possible to use 
spectral libraries to alleviate the labor burden of sample 
collection and analysis, for our purposes, spectral libraries 
have two drawbacks: i) they often contain ten or fewer 
spectra per sample and ii) the spectrum is usually measured 
in the laboratory, which yields data cleaner than that 
collected in the field.  For an SVM detector to perform well 
in field, it must be trained on field data or something that 
closely resembles it.  
 
In an effort to inexpensively obtain spectral data with many 
of the characteristics of field data, we have begun to develop 
a generative model for spectra.  The model starts with a 
database populated from two well-know spectral libraries: 
JPL’s Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) library [12] and the U.S. 
Geological Survey’s (USGS) speclib04 [6].  To this 
database we add virtual rocks, defined as containing one or 
more constituent minerals in specific percentages or 
percentage ranges.  For data generation, all percentages are 
chosen using a uniform pseudorandom number generator. 
 
In addition to a percentage (range), for each virtual rock 
description, we classify each mineral as essential, 
accessory, or accidental.  Essential minerals are required to 

occur in a rock at the percentage (or within the range) 
specified.  Accessory minerals, which may occur in the 
virtual rock, are added to a rock if the chosen percentages 
for essential minerals do not sum to 100.  Finally, accidental 
minerals, which rarely occur in the virtual rock, are added to 
rocks with low probability (usually less than 10% of the 
rocks generated) (Table 1).  The compositions of the virtual 
rocks were selected to represent rocks known (from 
meteorite specimens and orbital spectroscopy) and predicted 
to occur on Mars.  This includes basic volcanic rocks (i.e., 
basalts) and dust that comprise the majority of the surface as 
well as minerals of interest (minerals associated with water 
such as carbonates and evaporates).  The classification of 
minerals as essential, accessory, or accidental and their 
percentages are constrained to be geologically reasonable. 
 

Table 1. Sample virtual rock composition for Basalts. 
Essential Accessory 

Mineral % in rock Mineral % in rock 
Labradorite 40–55 Hematite 1–10 
Augite 31–45 Magnetite 1–10 
Forsterite 0–20 Ilmenite 1–10 
  Quartz 1–10 
 
To generate spectra for each virtual rock, we take the rock’s 
constituent mineral spectra and corresponding percentages 
and apply a mixing model.  The simplest is a linear mixing 
model.  Let r(m, b) be the reflectance for end-member m at 
bandwidth b.  Then, given the mix percentage for each end-
member wm, the mixed reflectance for band b, Rb, is: 
  
 Rb = wmr(m,b)

m

∑  (1) 

 
Thus, under the linear mixing model, mixed reflectances are 
simply weighted, linear combinations of end-member 
spectra.  Recall, however, the spectra are drawn from 
spectral libraries, which contain predominately laboratory 
spectra.  To simulate instrument and other noise 
encountered when taking field measurements, we add 
pseudorandom Gaussian noise with mean zero and variance 
σ: 
 
 Rb = wmr(m,b)

m

∑ + N[0,σ ] (2) 

 
While such a mixing model is simplistic, it has allowed us 
to setup and test our generative model framework and it can 
provide a wealth of spectra with many subtle variations to 
train SVMs and other machine learning techniques.  We are 
currently developing a set of richer, nonlinear mixing 
models based on the reflectance and refraction models of 
Hapke [11]. 
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4. DETECTOR CONSTRUCTION 

To reduce computation time, we first limit the detector input 
to those regions of the spectrum that contain characteristic 
features of jarosite.  We also sought to avoid noise due to 
atmospheric water vapor at 1400 and 1900 nm that would be 
encountered during field tests.  Jarosite typically has the 
following spectral features: a steep slope from 350–700 nm 
which is the edge of a charge transfer band, ferric crystal 
field transition bands at 430 nm and ~930 nm, and bound 
water vibration bands ~1470, 1850, 2250 and 2500 nm [13, 
14, 22, 19, 2] (Figure 1).  While the 430 nm band is specific 
to jarosite, this band is lost in noise in some of our spectra 
and omitted in this initial detector.  We selected two spectral 
intervals over which the detector will operate: 500–1350 nm 
and 2050–2380 nm.  Compositional variability in jarosite 
(natrojarosite NaFe3(SO4)2(OH)6, plumbojarosite 
PbFe3(SO4)4(OH)12, hydronium jarosite (H3O)Fe   
(SO4)2(OH)6) are found to have minimal effect on band 
positions [16, 2], and thus the detector should apply to these 
end-members and their solid solutions. 
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Figure 1. Input intervals for the SVM jarosite detector as 
well as jarosite band assignments and locations. Spectrum 
from JPL ASTER. 
 
A generative model was used to create linear mixtures of 
spectral library data for SVM training [3] (Section 3).  Nine 
different jarosite spectra representing the K, Na and H3O 
varieties of the mineral from the Unites States Geologic 
Survey (USGS) Speclib04a database were introduced as 
“jarosites” for training purposes [6].  Training spectra for 
the non-jarosite class includes minerals that are often found 
in the presence of jarosite and which are consistent with 
martian petrology.  (Table 2) [17].  Minerals that occur 
terrestrially with jarosite were also included.  In total 100 
spectra were created to train the SVM. Of these, 54 were 
jarosites and 46 were non-jarosite with the later group 

comprising equal amounts of pure end member, binary, 
tertiary and quaternary spectra mixtures. 

 
Table 2. Minerals used for the “non-jarosite” class while 

training the SVM detector. 
Martian igneous and 
weathering product 
minerals 

Minerals often associated 
with jarosite 

Augite Alunite 
Chromite Anhydrite 
Clinochlore Epsomite 
Kaolinite Ferrihydrite 
Montmorillonite Goethite 
Olivine Gypsum 
Pigeonite Hematite 
Siderite Lepidocrosite 
Talc Magnetite 

 
Upon completion of the original detector, an additional 
detector was created with inputs tailored to avoid spectral 
absorptions expected in the Martian atmosphere. The 
atmosphere of Mars contains 95% CO2, 0.13% O2, 0.07% 
CO and 0.03% H2O [21], resulting in characteristic 
absorptions in the VIS/NIR [1]. The presence of CO2 and 
CO bands limits the input ranges of the new detector to 
500–1260 and 2185–2310 nm.  

5. DETECTOR TESTING  

After training, the detector was tested on laboratory spectra 
of known jarosite samples from Wesleyan University's 
Peoples Museum.  Spectra were collected with an ASD 
FieldSpec® FR operating over 350–2500 nm.  Spectra were 
taken of multiple locations on each sample to include 
variations in crystal size and color.  Additionally, 200 non-
jarosite (evaporites and iron oxides) spectra of 22 pure 
mineral specimens were collected in the laboratory and 
analyzed to determine the detector's ability to correctly 
reject samples. 
 
To better assess the sensitivity of the jarosite detector to 
mineral assemblages more typical of what is seen in the 
field, laboratory spectra were collected of samples taken 
from the Sulphur Springs hydrothermal field in St. Lucia in 
June and November 2004, where jarosite typically occurs as 
a hydrothermal alteration product [10].  Finally, the detector 
was run on spectra of Sulphur Springs samples directly 
taken in the field to test the sensitivity of the detector to 
changing light and atmospheric conditions and consequent 
signal to noise ratio.  Jarosite was confirmed in a subset of 
the samples by X-ray Diffraction (XRD) and Scanning 
Electron Microscope Energy Dispersive Spectrometry 
(SEM-EDS), the remaining spectra were inspected and 
compared to published spectra [14, 13, 6, 12]. 
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6. RESULTS 

Jarosite detector performance is indicated in Table 3.  These 
results pertain to the averaged spectra of 201 samples, 
where 10–20 spectra were averaged.  The jarosite detector 
performed well on spectra of museum quality samples taken 
under laboratory conditions.  These samples are near pure 
jarosites and therefore most similar to the training spectra.  
The detector also performed well on the spectra of rock 
samples collected under both laboratory and field 
conditions, although detector outputs for data collected in 
the field have greater variation (σ = 0.16) than laboratory 
spectra of field samples (σ = 0.024). 
 

Table 3.  Jarosite Detector Performance. 
Experiment Category Earth 

Atmosphere 
(% correct) 

Mars 
Atmosphere 
(% correct) 

Jarosite 
detection 

8/9 (89) 7/9 (78)Museum 
Quality 
Samples 
(in Lab) 

non-jarosite 
rejection 

22/22 (100) 20/22 (91)

Jarosite 21/29 (72) 23/29 (79)Field Samples 
(in Lab) non-jarosite 62/69 (90) 62/69 (90)

Jarosite 17/21 (81) 19/21 (91)Field Samples 
non-jarosite 46/51 (90) 43/51 (84)

Overall Performance 176/201 
(88%) 

174/201
(87%)

 
There was some consistency in the spectra misclassified by 
the detector.  False positives generally tend to exhibit a large 
Fe3+ absorption at 920 nm or a steep positive slope at 700 
nm, both of which are characteristics of jarosite spectra.  
These features are associated with several iron oxides.  
Biological materials containing chlorophyll also commonly 
produced false positives due a steep positive slope in this 
700 nm region.  Spectra that were incorrectly identified as 
non-jarosite by the detectors typically have either low 
reflectance and/or small band depths in the detector input 
ranges (500–1380 and 2050–2380 nm).  The latter is 
indicative of mineral mixing where jarosite is at low 
concentration or fine grain size which increase scattering 
and therefore reduce the strength of characteristic 
absorptions. 
 
While the Earth-based and Mars-based jarosite detectors 
performed similarly overall, the detectors classified spectra 
differently.  The Mars-based detector was less likely than 
the Earth-based detector to assign false positives to 
biological samples, yet more likely to assign false positives 
to goethite spectra (absorption at ~900 nm).  False negative 
assignment errors were similar between the two detectors. 
 
These results do show the ability of the detector to 
recognize jarosite in natural mixtures both in the laboratory 
and field conditions.  In these samples, jarosite is often 

found in intimate contact with alunite (typically 
(K,Na)Al3(SO4)2(OH)6), goethite FeO(OH) and gypsum 
CaSO4•2H2O [10] (Figure 1).  Spectra from the field 
samples frequently contain absorptions from two or more of 
these minerals.  The detector is successful in distinguishing 
jarosite from this hydrated assemblage of sulfates and oxide. 
 

7. CLARATY INTEGRATION 

The Coupled Layer Architecture for Robotic Autonomy 
(CLARAty) [20] is a software infrastructure for autonomous 
mobile robotics.  CLARAty provides an environment for 
researchers to develop, validate, and share robotics software 
components.  The number and variety of highly specialized 
software components required to create autonomous mobile 
robots makes component sharing not only an effective form 
of software reuse, but nearly essential. By pooling software 
components in a single place and working to ensure 
consistent data structures and interfaces among them, 
researchers can leverage the work of one another.  For 
instance, the developer of a path-planning module will 
likely require basic locomotion and machine vision 
capabilities.  Rather than developing custom 
implementations of these modules from scratch, they can 
instead make use of the ones already present in CLARAty.  
Similarly, others can make use of their path-planning 
module.  The Jet Propulsion Laboratory, NASA Ames, 
Carnegie Mellon University, and the University of 
Minnesota develop CLARAty with additional contributions 
from the University of Washington, the University of 
Michigan, and the Massachusetts Institute of Technology. 
 
We chose to integrate our jarosite detector with CLARAty 
to make it available to researchers who may have little 
knowledge of geology and spectroscopy, but who could use 
it as a component of a larger rover autonomous traverse 
science scenario (e.g. [4]).  CLARAty defines four levels of 
integration.  At Level 1 (Deposited) a component must be 
under CLARAty revision control and compile and run as a 
standalone application.  At Level 2 (Encapsulated) a 
component must integrate with other CLARAty components 
and run on at least one robot platform.  The Level 2 
integration requirement helps promote a cohesive and 
consistent software interface throughout CLARAty.  Levels 
3 and 4 require the component adhere to a CLARAty 
Application Programming Interface (API), undergo 
extensive peer, and run on all supported robot platforms.  In 
addition to levels of integration, CLARAty defines two 
major layers of operation, the Functional Layer (FL) and the 
Decision Layer (DL).  Components in the FL provide for 
basic rover navigation, locomotion, and state estimation.  
Components in the DL are responsible for higher-level 
decision-making including obstacle avoidance and path 
planning. 
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We have integrated the jarosite detector into CLARAty as a 
Level 2 Decision Layer component.  We could not integrate 
the jarosite detector beyond Level 2 since a CLARAty API 
for spectral analysis has yet to be defined.  The detector 
makes use of a preexisting CLARAty data structure for 
storing calibrated reflectance spectroscopy data.  The 
detector interface is written in C++ according to CLARAty 
coding standards.  However, the core of the detector is 
written in ISO C and has several desirable properties that 
make it particularly lightweight and amenable to running on 
flight hardware. 
 
Recall the jarosite detector is an SVM with a linear kernel 
and nine 120 dimensional support vectors.  Using the 
technique outlined in Section 2, we reduced the detector 
from nine dot products to a single dot product computation.  
Thus, only 120 floating-point multiplications, 1 subtraction 
and a comparison to zero are required per detection.  To 
keep memory requirements to a minimum, the vector to dot 
is stored in static memory and the dot product is computed 
using register variables.  No dynamic memory allocation is 
required. 
 

8. CONCLUSIONS 

We have developed two SVM-based jarosite detectors, 
designed to avoid Earth and Martian atmospheric absorption 
bands respectively.  Both detectors correctly identify 
jarosite minerals in laboratory and field settings with overall 
accuracies of 88% (Earth-based) and 87% (Mars-based). 
The success of the detectors on field spectra demonstrates 
the potential ability of this technique to autonomously 
identify critical aqueous mineralogies on Mars.  To bring 
these detectors one-step closer to flight hardware and make 
them available to researchers at several NASA centers and 
universities, we integrated them into the CLARAty 
autonomous mobile robotic software architecture.  Finally, 
we demonstrated that the same detector construction 
techniques could be applied to hyperspectral imaging 
spectrometer data such as AVIRIS. 

9. FUTURE DIRECTIONS 

 
While our detectors were created to operate on ground-
based point spectra, we believe similar detector construction 
techniques will yield detectors that perform well on 
hyperspectral images.  We are currently attempting to create 
detectors tuned to a variety of airborne and spaceborne 
instruments, including AVIRIS and Hyperion at Earth and 
OMEGA and CRISM at Mars.  There are at least two other 
systems for identifying minerals in hyperspectral images, 
Hypereye [18] and Tetracorder [5].  Our approach offers 
advantages over both.  First, Hypereye makes use of 

unsupervised clustering to identify groups of similar spectra.  
It is still necessary for a domain expert to examine each 
spectral group and determine its end-member minerals.  In 
contrast, since we make use of supervised machine learning 
techniques we can create detectors to target specific 
minerals.  Second, while Tetracorder can target specific 
minerals, its expert system relies on rules that look for 
diagnostic absorption bands. To search for new minerals, 
new rules and reference spectra must be added, tested, and 
refined, which can be a labor-intensive process.  Finally, we 
believe our linear mixing model is particularly apt for 
hyperspectral mineral detectors, since at orbital resolutions, 
mixing is well approximated as linear [23]. 
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