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Abstract—We have developed an artificial neural network 
(ANN) based carbonate detector capable of running on 
current and future rover hardware.  The detector can identify 
calcite in visible/NIR (350–2500 nm) spectra of both 
laboratory specimens covered by ferric dust and rocks in 
Mars analogue field environments.  The ANN was trained 
using the Backpropagation algorithm with sigmoid 
activation neurons.  For the training dataset, we chose nine 
carbonate and eight non-carbonate representative mineral 
spectra from the USGS spectral library.  Using these spectra 
as seeds, we generated 10,000 variants with up to 2% 
Gaussian noise in each reflectance measurement.  We cross-
validated several ANN architectures, training on 9,900 
spectra and testing on the remaining 100.  The best 
performing ANN correctly detected, with perfect accuracy, 
the presence (or absence) of carbonate in spectral data taken 
on field samples from the Mojave desert and clean, pure 
marbles from CT.  Sensitivity experiments with JSC Mars-1 
simulant dust suggest the carbonate detector would perform 
well in aeolian Martian environments1,2. 
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1. INTRODUCTION 

Data collection capabilities of Mars rovers far surpass 
downlink rates, which can result in a critical loss of valuable 
science data.  Onboard techniques for identifying 
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geologically relevant information and prioritizing its 
downlink have the potential to dramatically increase the 
science return of future rover missions.  Carbonate minerals 
are of particular geologic importance because they signal 
the presence of water and can be associated with life on 
Earth.  For these reasons, we have developed an artificial 
neural network (ANN) based carbonate detector capable of 
running on current and future rover hardware. 
 
The carbonate detector was developed using a supervised 
learning method.  A brief introduction to neural networks is 
provided in Section 2.  In Section 3, we describe the source 
of data used to train the detector.  We then describe the 
development of the neural network based carbonate detector 
in Section 4.  In Section 5, two tests on spectral 
measurements of representative samples are described. One 
data set is of a field site in Silver Lake, California and the 
other data set consists of measurements of a calcite 
(carbonate) sample covered with layers of increasing 
thickness of dust.  A key aspect of the selection of a neural 
network classifier for the detector is the low computational 
requirements to analyze a measurement.  In Section 6, we 
detail the computational requirements of the detector and 
explain how it might be used on a rover as part of an 
onboard science data analysis system for analyzing data 
during rover traverses.  Finally, in Sections 7 and 8, we 
draw conclusions and offer directions for future work. 

2. NEURAL NETWORKS 

In this section, we give a brief overview of artificial neural 
networks, beginning with their biologically inspired roots.  
Our goal is to give readers unfamiliar with ANNs an 
intuitive understanding of what they are and how they work. 
As such, we omit any formal mathematical descriptions of 
ANNs.  Readers familiar with the topic may wish to skip to 
the next section.    
 
Artificial neural networks are a class of machine learning 
techniques loosely based on theories of how biological 
neural networks store and retrieve information, or more 
generally, compute.  At a coarse level, a biological neural 
network is comprised of neurons and the synapses that 
connect them.  Synapses carry electrochemical signals to 
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and from neurons.  Synapses feeding into neurons are called 
dendrites, while those fanning out from neurons are axons.  
A stimulus received at a dendrite is either amplified or 
diminished as it is propagated to the connected neuron.  
Since a neuron may have multiple dendrites all providing 
stimuli, all dendrite signals taken together form the neuron’s 
total input.  If the total input signal exceeds some threshold 
the neuron is excited and, as a result, propagates its 
electrochemical response to neighboring neurons via its 
axon.  Otherwise, the neuron’s response is inhibited.  In 
general, the greater the total input, the greater the neuron’s 
response.  The information contained in a neural network is 
embodied in its collection of synapses.  Finally, plasticity is 
the ability of synapses to change the degree to which they 
amplify or diminish stimuli over time, based on the 
frequency and strength of the stimuli; it is plasticity that 
allows a neural network to both learn and forget. 
 
An artificial neural network is similar to its biological 
counterpart.  Stimuli and synapses are modeled as real 
numbers.  In the case of synapses, these numbers, often 
called weights, represent the degree to which the synapse 
amplifies (positive value) or diminishes (negative value) the 
input stimuli.  A signal propagated along a synapse is 
simply the value of the stimuli multiplied by the synapse’s 
weight value.  The total input to a neuron is the sum of all 
incoming propagated signals.  Neurons are modeled as 
functions that map the total input stimulus to a real number 
response.  The function’s output is the degree to which a 
neuron is excited or inhibited.  Plasticity is modeled as a 
specific algorithm (e.g. Backpropagation [9]) for tuning 
synapse weight values to produce the desired responses for a 
set of input stimuli. 
 
Training an artificial neural network proceeds as follows: 
We present the network with a pattern to learn, usually 
represented as a set of input stimuli.  The network 
propagates the pattern through its synapses and neurons 
until it produces a final output pattern or value.  The training 
algorithm compares the output to an expected output and if 
they do not match, the algorithm slightly adjusts the 
network’s synaptic weights so that if we again presented the 
pattern to the network, the network’s output would be closer 
to the expected output.  It’s important the synapse weight 
adjustments do not produce exactly the expected output.  
Otherwise, the network learns to identify only this pattern, 
whereas the typical goal is to have a network learn to 
recognize many patterns and further generalize to new, 
unseen (yet similar) patterns.  We repeat this pattern 
presentation and weight adjustment process with new input 
patterns, over and over again, cycling through the training 
patterns, until the network produces acceptable outputs for 
all inputs.  To bring this discussion full circle, note that this 
process is very similar to how humans learn through many 
(similar) repetitions. 

3. GENERATIVE MODEL  

A potential drawback of ANNs is that large numbers of 
training examples are often required for the network to 
converge (learn).  Our initial experiments showed that tens 
of spectra were insufficient to train an ANN to predict the 
presence or absence of mineral end-members.  This 
presented a problem since collecting only a few dozen 
samples often requires days of fieldwork followed by lab 
work to verify the modal mineralogy of each sample.  While 
it is possible to use spectral libraries to alleviate the labor 
burden of sample collection and analysis, for our purposes, 
spectral libraries have two drawbacks: i) they often contain 
ten or fewer spectra per sample and ii) the spectrum is 
usually measured in the laboratory, which yields data 
cleaner than that collected in the field.  For an ANN detector 
to perform well in field, it must be trained on field data or 
something that closely resembles it.  
 
In an effort to inexpensively obtain spectral data with many 
of the characteristics of field data, we have begun to develop 
a generative model for spectra.  The model starts with a 
database populated from two well-know spectral libraries: 
JPL’s Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) library [7] and the U.S. 
Geological Survey’s (USGS) speclib04 [2].  To this 
database we add virtual rocks, described in terms of either 
absolute mineral constituent percentages or percentage 
ranges.  For data generation, all percentages are chosen 
using a uniform pseudorandom number generator. 
 
In addition to a percentage (range), for each virtual rock 
description, we classify each mineral as essential, 
accessory, or accidental.  Essential minerals are required to 
occur in a rock at the percentage (or within the range) 
specified.  Accessory minerals are added to a rock if the 
chosen percentages for essential minerals do not sum to 
100.  Finally, accidental minerals are added to rocks with 
low probability (usually less than 10% of the rocks 
generated).  The compositions of the virtual rocks were 
selected to represent rocks known (from meteorite 
specimens and orbital spectroscopy) and predicted to occur 
on Mars.  This includes basic volcanic rocks (i.e., basalts) 
and dust that comprise the majority of the surface as well as 
minerals of interest (minerals associated with water such as 
carbonates and evaporates).  The classification of minerals 
as essential, accessory, or accidental and their percentages 
are constrained to be geologically reasonable. 
 
To generate spectra for each virtual rock, we take the rock’s 
constituent mineral spectra and corresponding percentages 
and apply a mixing model.  The simplest is a linear mixing 
model.  Let r(m, b) be the reflectance for end-member m at 
bandwidth b.  Then, given the mix percentage for each end-
member wm, the mixed reflectance for band b, Rb, is: 
  
 Rb = wmr(m,b)

m

∑  (1) 
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Thus, under the linear mixing model, mixed reflectances are 
simply weighted, linear combinations of end-member 
spectra.  Recall, however, the spectra are drawn from 
spectral libraries, which contain predominately laboratory 
spectra.  To simulate instrument and other noise 
encountered when taking field measurements, we add 
pseudorandom Gaussian noise with mean zero and variance 
σ: 
 
 Rb = wmr(m,b)

m

∑ + N[0,σ ] (2) 

 
While such a mixing model is simplistic, it has allowed us 
to setup and test our generative model framework and it can 
provide a wealth of spectra with many subtle variations to 
train ANNs and other machine learning techniques.  We are 
currently developing a set of richer, nonlinear mixing 
models based on the reflectance and refraction models of 
Hapke [6].    

4. DETECTOR CONSTRUCTION 

We used our generative model to create 10,000 spectra to 
train several ANNs (see Figure 1).  The spectra were based 
on nine carbonate and eight non-carbonate minerals (see 
Table 1).  The carbonate set includes those carbonates that 
are most abundant on the Earth and those for which library 
spectra were available in the ASTER spectral library [7].  
The non-carbonate set includes the major rock-forming 
minerals of igneous rocks on the Earth and the martian 
meteorites [e.g., 8], and one mineral (clinochlore) produced 
during the interaction of mafic igneous rocks with water in a 
hydrothermal environment.  For the sake of simplicity, in 
our initial experiments we turned off mineral mixing and 
instead added only up to 2% Gaussian noise to each 
reflectance measurement. Initially we generated spectral 
data at the full instrument resolution of 2,151 measurements 
(0.35 to 2.5 µm in .001 µm increments), but after visual 
inspection we found we could reduce the number of network 
inputs to 215 by averaging every 10 µm without appreciable 
information loss.  Further, we were concerned about noise at 
1.4 and 1.9 µm due to atmospheric water.  To avoid these 
bands altogether and focus on the absorption regions most 
characteristic of carbonates, we eliminated all bands except 
the 2.0 to 2.4 µm region.  Averaging every 10 µm 
reflectance values in this region yielded a more manageable 
41 input values. This significantly reduced our network 
training times, allowing us to test several additional ANN 
architectures and parameters. 

 

Figure 1 – A random sample of 100 carbonate (top) and 100 
non-carbonate (bottom) spectra (out of 10,000) used to train 
the carbonate detector.  We created these “synthetic” spectra 
by applying our generative model to ASTER spectra for the 
minerals listed in Table 1. 

 

Table 1: Mineral spectra used for ANN training 

Non-carbonates Carbonates 
Hematite Cerussite 
Magnetite Strontianite 
Clinochlore Witherite 
Biotite Calcite 
Albite Rhodochrosite 
Quartz Siderite 
Augite Dolomite 
Orthoclase Azurite 
 Malachite 
 
 
To search the space of likely network architectures and 
parameters, we took a cross-validation approach.  First, we 
divided the 10,000 spectra into a 9,900 sample training set 
that we used to train each network.  The remaining 100 
samples were used to test the accuracy of each network after 
training was complete. 
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Figure 2 – The neural network architecture of the carbonate 
detector.  The network has an input layer, two hidden layers, 
and an output layer.  Input (Xn) are reflectance 
measurements taken from 2000 to 2400 nm in 10 nm 
increments.  Output is a single real value in the range [0, 1], 
with a threshold set at 0.3 to produce a binary result: 
carbonate (≥ .3) or no carbonate (< .3).  Weights (Wn) are 
determined via the standard Backpropagation algorithm. 

 
After some trial and error, we discovered a robust carbonate 
detector with 41 inputs and three successive layers with 25, 
10, and one, neuron(s) respectively (see Figure 2).  The 
single neuron layer is the detector output and reports values 
between zero and one.  All detectors were trained with the 
standard Backpropagation algorithm and sigmoidal 
activation units. For the training dataset, all carbonates were 
assigned an output value of one and all non-carbonates a 
value of zero.  The nature of Backpropagation and the 
sigmoid transfer functions are such that the output unit 
rarely produces values at these two extrema.  Instead values 
closer to zero indicate the absence of carbonate and values 
closer to one indicate the presence of carbonate.  To choose 
the best detection threshold, we examined how well the 
detector was able to separate spectral data taken during our 
Silver Lake field test (see next section).  We found the 
carbonate detector was clearly able to separate multiple 
spectra, taken from several distances (two, four, six, and 
eight meters) and directions (left, right, and center), of a 
limestone rock from data taken from a granite, gneiss, and 
metagabbro.  We varied the detection threshold from zero to 
one in .001 increments, and calculated the percentage of 
limestone spectra correctly recognized as containing 
carbonate.  This percentage is the true positive percentage.  
We also calculated the true negative percentage, i.e. as the 
same threshold varies from zero to one, the percentage of 
the other rocks correctly identified as not containing 
carbonate.  A plot of these two percentages is shown in 
Figure 3.  From this plot, there is a range of thresholds from 
0.2 to 0.3 that minimize the number of false positives and 
maximize the number of true positives.  We selected 0.3 for 
future tests to conservatively minimize false positives for 
datasets. 
 

 
Figure 3 – Carbonate detector receiver operator 
characteristic curve for the Silver Lake Field data.  The solid 
(green) line shows the percentage of true positives as a 
function of a threshold on the detectors output unit.  The 
dashed (red) line shows the percentage of true negatives.  
The ideal threshold for the detector, accounting for all true 
positives and minimizing the number of false positives, is 
0.3. 

5. DETECTOR TESTING 

After training, the ANN classifier was tested on data 
collected in the field at Silver Lake, CA.  Silver Lake Playa 
is approximately 12 by 3 km and lies 3 km north of Baker, 
CA.  Silver Lake was used as one of the test sites for the 
field prototype Mars rover, FIDO (Field Integration Data 
and Operations).  The playa's long-term arid environment, 
lacustrine features and sediments make it a geological 
analog for sites on Mars which may contain evidence of 
water. 
 
Spectrometer measurements were taken using a 
FieldSpecFR (Analytical Spectral Devices, Inc., ASD) 
fiberoptic spectrometer operating over the 350-2500 nm 
wavelength range.  This wavelength range includes 
distinctive spectral features for carbonates, Fe-bearing 
minerals, and clay minerals.  Measurements were taken over 
a range of distances and azimuths in order to accommodate 
rock heterogeneity and variations in lighting.  The test data 
consisted of 30 field spectra of four different types of rocks. 
In our experiments on this limited test set, the neural net 
correctly identified the presence or absence of carbonate 
minerals in all cases (see Figure 4) [4]. 
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Figure 4 – Results of carbonate detector on the 2000–2400 
nm region of 30 field spectra collected at the Silver Lake 
site.  The absorption at ~2330 nm present in each of the 
carbonate spectra (top) allowed them to be successfully 
distinguished from non-carbonate (bottom) by the detector. 

 
A second field test was performed on dolomitic marbles in 
northwest CT.  Spectra were collected of fresh (weathered 
surface removed using a hammer) and weathered surfaces; 
399 spectra were collected of 30 targets at three outcrops.  
In our preliminary analysis, we find the detector correctly 
identified carbonate in the spectra of 6 targets that were 
fresh and dominated by dolomite.  The detector failed to 
detect carbonate in weathered surfaces of the dolomite-
bearing rocks with one exception being a rock with a sugary 
texture prone to removal and thus exposing fresh crystals.  
Spectra that passed the detector had strong carbonate 
absorptions at both 2160 nm and 2340 nm.  Weathering of 
the dolomite to clay minerals reduces these absorptions and 
making the spectra unrecognizable to the detector.  Such 
coatings may limit the ability of a rover-based detector to 
recognize primary mineralogy remotely. 
 
To examine this issue further, we sought to test the detector 
in more realistic Mars-like environments.  Of particular 

concern is the ability to discern primary rock mineralogy 
through the ferric dust detected on the surface of Mars by 
earth-based, orbital and landed instruments.  Martian dust 
coatings strongly affect the spectral characteristics of 
surface rocks potentially masking the underlying substrate 
rock.  To test the limits of the performance of the carbonate 
detector, we performed a series of experiments to simulate 
the deposition of Mars-analogue ferric dust onto a calcite 
substrate [5].  The detector correctly recognizes a calcite 
crystal beneath dust layers of up to ~100µm and 80% 
coverage.  Dust layers of this magnitude may be expected 
on rocks within regions of aeolian activity and dust 
mobilization.  The carbonate detector should accurately 
recognize coarse-grained calcite in dusty rocks in such 
environments. 

6. FLIGHT READINESS 

The detector consumes minimal CPU time and storage and 
thus is ideal for use in onboard rovers during long traverses. 
 
A single run of the detector requires 1285 floating-point 
multiplication operations and also 1285 floating-point 
addition operations.  While the sigmoidal activation 
function can be more costly to compute, it is often feasible 
to replace function calculation with two table lookups 
followed by a linear interpolation.  In total each detector run 
requires no more than 3,000 operations.  This is well within 
the capability of current flight microprocessors.  We realize 
that often such processors do not contain math coprocessor 
capable of performing floating-point operations.  To run on 
such processors, the floating-point multiplications and 
additions would need to be converted to fixed-point.  The 
detector itself is written in 100% pure ANSI C and has been 
compiled on Linux, Windows, and MacOS X with no 
source code changes required.  The source code and 
network weight file consume less than 100 KB of storage. 
 
The carbonate detector can be combined as a part of a larger 
integrated on board science analysis system.  Such a system 
called the Onboard Autonomous Science Investigation 
System (OASIS) is currently under development [1].  In this 
system, data is analyzed during a rover traverse for 
interesting scientific targets.  Carbonate minerals are one 
form of interesting target and the carbonate detector would 
provide a beneficial form of feature extraction.  The 
carbonate detector could be used in several ways.  One 
mode of operation would be to use a fixed sampling strategy 
during a traverse where samples are collected either by 
targeting rocks or just pointing in a fixed direction.  This 
data would be analyzed for key signatures.  Upon 
identification of a carbonate, the data would be saved along 
with an image of the target to transmit at a downlink 
opportunity.  Thus, the data would be prioritized for 
downlink, where data indicating detected targets is given 
highest priority.  This allows the rover to collect at the 
maximum rate that the instrument and processing allow 



 6

rather than limiting data collection based on downlink 
bandwidth.  Another mode of operation that the carbonate 
detector may be used is in reaction to analysis of data from 
another instrument.  In this mode, engineering data collected 
for navigation (e.g. navigation and hazard camera images) 
would be analyzed for candidate targets of interest.  Spectral 
measurements of identified candidate targets would be 
collected and analyzed to determine if the candidate has 
interesting composition as hypothesized from the 
engineering data.  In each mode of operation, the analysis 
results can be used for prioritizing data for downlink or as a 
science alert for the rover to take action in response to the 
detection. 

7. CONCLUSIONS 

We have developed an ANN-based carbonate detector that 
correctly identifies carbonate minerals in laboratory, field 
and Mars-analogue settings.  The success of the neural net 
classifier at identification of carbonates in field spectra 
demonstrated the potential ability of this technique to 
autonomously identify critical mineralogies on Mars. 

8. FUTURE DIRECTIONS 

There are several areas in which further work needs to be 
done to have a system of mineral detectors suitable for use 
for onboard a rover.  The first area that we are exploring is 
the use of a Support Vector Machine (SVM) classifier.  
Neural networks were initially selected over SVM’s largely 
due to the significantly less computational requirements for 
analysis.  Recent advances in SVM methods have now led 
to a reduction in computational requirements [3].  Although, 
in general, still greater than neural nets, SVM’s may be a 
competitive alternative and have demonstrated higher 
accuracy in many other application areas.  One of the 
benefits of SVM’s is that fewer training examples are 
needed in order to get a high quality classifier.  For 
example, an SVM classifier may use 500 training examples 
versus 10,000 training examples for a neural net.   
 
A second area that we are exploring is detectors for 
additional mineral classes.  Finally, we recognize that while 
we have modeled the minerals as linearly mixing together in 
forming rocks, more often, rocks are intimate mixtures 
where the reflected spectra is not a linear combination of the 
constituent minerals weighted in proportion to the 
percentage of each mineral present.  We are developing 
nonlinear models that more closely represent the observed 
mixing behavior. 
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