TELL US ABOUT YOURSELF
I am a third-year PhD student from Serbia. I finished a medical high school for pharmacists in Nis, Serbia, and played soccer in the main Serbian women’s league. I got a full scholarship to play D-I soccer and get my bachelor's at Fairleigh Dickinson University in New Jersey, after which I decided to continue my education and come to Wesleyan for grad school. In my free time, I help out with the varsity women's soccer team at Wesleyan as a graduate assistant coach, go to the gym, hang out with friends, and travel. I love doing puzzles. I recently got a cat, and I enjoy the role of a cat mom a lot :)

WHAT SONG HAS BEEN STUCK IN YOUR HEAD LATELY?
‘Ima Nesto Od Srca do Srca’ by Crvena Jabuka.

WHAT SUPERPOWER WOULD YOU LIKE TO HAVE?
I would love to be able to teleport and go wherever I want whenever I want.

WHAT IS A FUN FACT THAT NOT MANY OF US KNOW ABOUT YOU?
I was a captain for the U-19 Serbian Soccer National Team.

TELL US ABOUT YOUR CURRENT RESEARCH
Acenes are a class of organic compounds with a different number of linearly fused benzene rings. These compounds have shown electron transport, fluorescence, and redox properties that can be applied in optics, electronics, and magnetic fields in the form of sensors, light-emitting diodes (OLEDs), radio frequency identification (RFID) tags, and organic thin film transistors (OTFTs), etc. Azaacenes, such as phenazine and its derivatives, are related compounds that have nitrogen atoms located symmetrically in the conjugated benzene rings. They have p-conjugated systems that are better electron acceptors and more stable than acenes. My research is focused on the synthesis, nature, properties, and potential applications of phenazine derivatives. I got interested in the Northrop lab because organic chemistry is involved in technology and similar areas much more than I thought at first. What makes it fun is that organic synthesis is like a puzzle, you get to play with building blocks and use your imagination to create something extraordinary.