# Seminars and Colloquia

## Other

Oct 9

#### Undergrad Computer Science Club

04:30 pm

Exley Science Center Tower ESC 638

Daichi Onda 17' will tell us about his experience working at Amazon and his "Wesleyan Alumni in Tech network" project that he started to help CS students look for tech jobs.

Oct 4

#### Math Club Presentations

12:00 pm

Exley Science Center (Not Tower) ESC 184 (Woodhead Lounge)

INTRINSIC PROPERTIES OF GRAPHS EMBEDDED IN 3 ERICA FLAPAN, Editor in Chief of the Notices of the American Mathematical Society Knot theory is the study of embeddings of simple closed curves in 3 . A natural extension of knot theory is the study of embeddings of graphs in 3 . However, in contrast with knots, the structure of a graph can be complex, and this can affect all of its embeddings. If every embedding of a graph has a particular property, then we say that property is intrinsic to the graph. For example, a graph is said to be intrinsically knotted if every embedding of the graph in 3 contains a knot. In this talk I will introduce intrinsic knotting and other intrinsic properties of graphs, and present some open problems in the area.

Apr 12

#### Mathematics Colloquium

04:20 pm

Exley Science Center Tower ESC 121

Aaron Brown, University of Chicago Recent progress in the Zimmer program Abstract: The Zimmer program refers to a number of questions and conjectures about actions of certain discrete groups, namely, lattices in higher-rank simple Lie groups. The primary example example of a such a group is SL(n,R). In the past few years, there has been significant progress in the Zimmer program. In my talk, I will discuss a recent proof of Zimmer's conjecture which shows that (cocompact and certain non-uniform) higher-rank lattices do not act on manifolds with low dimension. I will also discuss recent results and work in progress that classify all possible non-trivial actions under certain dynamical or dimension assumptions.

Nov 30

#### PCSE/IDEAS: Programmers Summit

12:00 pm

Allbritton Center Allbritton 304

By invitation only. Contact mjkingsley@wesleyan.edu to learn more.

Nov 10

#### KrisTapp Talk

12:00 pm

Exley Science Center Tower ESC 139

Wesleyan's Undergrad Math Club Presents: The Math of Gerrymandering Abstract:In Gill v. Whitford , a Wisconsin court struck down the state assembly map as unconstitutional gerrymandering. Will the US Supreme court uphold this landmark ruling? The plaintiffs case hinges on elementary mathematics, including a simple new efficiency gap formula that attempts to measure gerrymandering. For deciding whether this formula works, a few highly relevant mathematical facts were discovered so recently, the Supreme Court probably doesnt know about them. But you will if you attend this talk. No math or political science background will be assumed.

Nov 8

Nov 1

Oct 26

#### Ann Guo Talk

12:00 pm

Exley Science Center (Not Tower) ESC 184 (Woodhead Lounge)

Wesleyan's Undergrad Math Club Presents: Ann Guo Career Engineering 101 Come learn how to design, build, and test careers that will fulfill your passions while considering the limitations imposed by parents, society, and studentloans. Ann is an MIT-trained computer scientist who eventually found her calling as a career coach. In between, she ran global campus recruiting at analgorithmic trading firm where she gained insider knowledge on the hiring process. At Passion Analytics, she is developing an automated online careercoach to help people at scale. Ann holds BS & MEng degrees in Computer Science from MIT and PhD from UMass Amherst. Lunch will be served!

Oct 22

#### MAMLS Conference

09:00 am

Exley Science Center Tower ESC 121

The Mid-Atlantic Mathematical Logic Seminar, supported by the NSF, will start its 2017-2018 season at Wesleyan University. 8 distinguished researchers will give 50-minute lectures, many on model theory, over the course of a day and a half. Day 2 Schedule: 9-9:50: Alexandra Shlapentokh, "The Definability World in Number Theory." 10:30-11:20: Philipp Rothmaler, "Pure submodules of direct products of finitely presented modules." 11:30-12:20: Deirdre Haskell, "Residue field domination in theories of valued fields."

Oct 21

#### MAMLS Conference

09:00 am

Exley Science Center Tower ESC 121

the Mid-Atlantic Mathematical Logic Seminar, supported by the NSF, will start its 2017-2018 season at Wesleyan University. 8 distinguished lecturers will give 50-minute lectures, many on model theory, over the course of a day and a half. Day 1: 9-9:50: Alex Kruckman, "Generic theories, independence, and NSOP1." 10:30-11:20: Sergei Starchenko, "The topological closure of algebraic and semi-algebraic flows on complex and real tori." 11:30-12:20: Hans Schoutens, "Defining affine n-space." 2:30-3:20: Alice Medvedev, "Feferman-Vaught and the Product of Finite Fields." 4-4:50: Pierre Simon, "Finitely generated dense subgroups of automorphism groups."

Mar 8

Dec 8

#### Class; Math Club Hill

12:00 pm

Exley Science Center Tower ESC 141

Wesleyans Undergrad Math Club presents: Professor Cameron Hill Very Large Networks In the last few decades, we have found that many of the most interesting structures and phenomena around can be described as networks. Examples of these include the Internet, the human brain, computer processors/chips, and many others. So, a network is a just system of discrete elements with connections/interactions between them. When investigating a very large network (e.g. the human brain has something like a hundred billion neurons), it is infeasible to examine each node individually, and even ``looking at the whole network at once is either impossible or basically meaningless. In this situation, we have to settle for examining either ``global processes on the network (which sort of, kind of, allow calculus to make sense) or random local sampling. These options raise several questions like, ``When can we guarantee that random local sampling is not lying to us? and ``Does random local sampling secretly have something to do with global processes? In this talk, I will make some of this stuff a bit more formal and principled, and I will try to explain how we are beginning to address and settle these questions.